
3. Quantum-Classical Correspondence 
for the Electromagnetic Field 1: 
The G lauber-Sudarshan P Representation 

In Chap. 1 we developed a formalism to handle dissipative problems in quan-
tum mechanics. The central result of this formalism was the operator master 
equation for the reduced density operator p of a dissipative system. This 
equation can be written formally as 

P = £p, (3.1) 

where ,C is a generalized Liouvillian, or "superoperator", which acts, not on 
the states, but on the operators of the system. In a specific application ,C is 
defined by an explicit expression in terms of various commutators involving 
system operators. While it is generally not possible to solve the operator 
master equation directly to find p(t) in operator form, we have seen that 
alternative methods of analysis are available to us. We can derive equations 
of motion for expectation values, and if these form a suitable closed set, 
solve these equations for time-dependent operator averages. Alternatively, 
we may choose a representation and take matrix elements of (3.1) to obtain 
equations of motion for the matrix elements of p. We have also seen how 
equations of motion for one-time operator averages can be used to obtain 
equations of motion for two-time averages (correlation functions) using the 
quantum regression formula. 

We are now going to meet an entirely new approach to the problem 
of solving the operator master equation and calculating operator averages 
and correlation functions. For the present we will only consider the elec-
tromagnetic field -i.e. the harmonic oscillator. In Chap. 6 we will general-
ize the techniques learned here to collections of two-level atoms. This new 
approach establishes a correspondence between quantum-mechanical opera-
tors and ordinary (classical) functions, such that quantities of interest in a 
quantum-mechanical problem can be calculated using the methods of classical 
statistical physics. Under this correspondence the operator master equation 
transforms into a partial differential equation for a quasidistribution function 
which corresponds to (represents) p. For the damped harmonic oscillator this 
quasidistribution function is a function of the classical phase-space variables 
q and p, or alternatively, the complex variables a = ( mwq + ip) I v'2!imw 
and a* = ( mwq - ip) I v'2!imw that correspond to the operators a and at. 
Operator averages, written in an appropriate order (e.g. normal order), are 
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calculated by integrating functions of these classical variables against the 
quasidistribution function, in the same manner in which we take classical 
phase-space averages. This quantum-classical correspondence is particularly 
appealing when the partial differential equation corresponding to the oper-
ator master equation is a Fokker-Planck equation. Fokker-Planck equations 
are familiar from classical statistical physics, and in this context they have 
been studied extensively [3.1]. When the operator master equation becomes 
a Fokker-Planck equation, analogies can be drawn between classical fluc-
tuation phenomena and fluctuations generated by the quantum dynamics. 
This helps us develop an intuition for the effects of quantum fluctuations. 
Also, mathematical techniques that were developed for analyzing Fokker-
Plank equations in their traditional setting can be sequestered to help solve 
a quantum-mechanical problem. 

There are, in fact, many ways in which to set up a quantum-classical 
correspondence. We will meet a number of these in this book and still more 
in Volume 2. The original ideas go back to the work of Wigner [3.2]. Wigner, 
however, was interested in general questions of quantum statistical mechanics, 
not specifically in quantum-optical applications; wide use of the methods of 
quantum-classical correspondence for problems in quantum optics only began 
with the work of Glauber [3.3] and Sudarshan [3.4]. These authors indepen-
dently developed what is now commonly known as the Glauber-Sudarshan P 
representation, or simply the P representation, for the electromagnetic field. 
The representation is based on a correspondence in which normal-ordered op-
erator averages are calculated as classical phase-space averages; it has been 
tailored for the special role played by normal-ordered averages in the theory of 
photodetection and quantum coherence [3.3, 3.5, 3.6]. The Wigner represen-
tation gives the averages of operators written in Weyl, or symmetric, order; 
other representations exist which use still different ordering conventions. 

3.1 The Glauber-Sudarshan P Representation 

The Glauber-Sudarshan P representation was introduced primarily for the 
description of statistical mixtures of coherent states - the closest approach 
within the quantum theory to the states of the electromagnetic field described 
by the classical statistical theory of optics. An understanding of this represen-
tation can therefore be built on a few simple properties of the coherent states. 
Formal definition of the P representation can, alternatively, be given without 
any mention of the coherent states; this is the more useful approach when we 
want to generalize the methods of quantum-classical correspondence to other 
representations for the field, and to representations for collections of two-level 
atoms. We will follow both routes in turn, to define the P representation and 
then illustrate its use by deriving a Fokker-Planck equation for the damped 
harmonic oscillator. We first follow the route based on coherent states, where 
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we begin with a review of some of the more important properties of these 
states. Further discussion of the coherent states can be found in Louisell [3. 7] 
and Sargent, Scully and Lamb [3.8]. 

3.1.1 Coherent States 

The coherent state Ia) is the right eigenstate of the annihilation operator a 
with complex eigenvalue a: 

ala)= ala), (3.2) 

From this definition we may prove the following properties of the coherent 
states: 

Proposition 3.1 If a harmonic oscillator, with Hamiltonian H = nwata, 
has as its initial state the coherent state lao), then it remains in a coherent 
state for all times with the oscillating complex amplitude a(t) = a 0e-iwt -
i.e. the time-dependent state of the oscillator is given by 

Proof. We show that llli(t)) is the right eigenstate of a with eigenvalue a(t): 

allli(t)) = ae-iwatatlao) 
. t t ( . t t . t t) = e-•wa a e•wa a ae-•wa a lao) 

= ( e-iwtao) ( e-iwat at lao)) 

= a(t)llli(t)), 

where we have used (1.40a) and (3.2). D 

Proposition 3.2 The coherent states are minimum uncertainty states: for 
a mechanical oscillator with position and momentum operators q and p, re-
spectively, 

LlqLlp= v\(fi- (q))2)V((fJ- (P))2) = 
where the averages are taken with respect to a coherent state. 

Proof. From (1.12a) and (1.12b), 

q = {fi(a +at), 

, ·fif-mw( t) p= -z --a-a 2 . 

(3.4) 

(3.5a) 

(3.5b) 
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Then, for an oscillator in the state Ia), 

( (q - (q) )2) = (q2)- (q)2 

= _n_(al(a2 + aat +at a+ at2)1a)- (q)2 
2mw 

= -2 1l, [(al(aat- ata)la) +(a+ a*)2]- (q) 2 
mw 

= -2 1'i (al[a,at]la) 
mw 
1'i 

2mw' 
(3.6a) 

where we have used (3.2) and the commutation relation (1.10); we assume 
that the state Ia) is normalized. Similarly, 

(3.6b) 

Thus, 

D 

Proposition 3.3 A normalized coherent state can be expanded in terms of 
the Fock states In), n = 0, 1, 2, ... , as 

(3.7) 

Proof. We write 
00 

n=O 

and substitute this expansion into (3.2). Using aln) = .Jriln- 1), this gives 
the relationship 

00 00 

n=l n=O 

Multiplying on the left by (ml and using the orthogonality of the Fock states, 
we have 

00 00 

L Cn Vn Dm,n-1 = a L CnDm,n ' 

n=l n=O 

or 

thus, 
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an 
Cn = 

vn! 
c0 is determined by the normalization condition (ala) = 1: 

thus, 

where the arbitrary phase has been chosen so that c0 is real. D 

Proposition 3.4 The coherent states are not orthogonal; the overlap of the 
states Ia) and I.B) is given by 

(3.8) 

Note that Ia) and I.B) are approximately orthogonal when Ia- .812 becomes 
large. 

Proof. Using (3.7) 

Then 
l(ai,B)12 = e-la12 e-1/312 ea'f3eaf3* 

= e-la-/312. 

Proposition 3.5 The coherent states are complete: 

the integration being taken over the entire complex plane. 

D 

(3.9) 
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or, in polar coordinates, 

where a = reicf>. The integration over ¢ gives zero unless n is equal to m. 
Thus, 

After integrating by parts n times, 

The final step follows from the completeness of the Fock states. D 

Proposition 3.6 The coherent states can be generated from the vacuum state 
by the action of the creation operator at: 

Proof. Using atln) = vn +lin+ 1), we have 

oo n 
1 I 12 t 1 I 12 L a tn e-2 o: eo:a IO) = e-2 o: -a IO) 

n! 
n=O 

1 2 00 an 
= e-21o:l L -, Vnlln) 

n=O n. 
oo n 

= e-!lo:1 2 L 
n=O v'nf 

(3.10) 

This is the expression (3. 7) for the Fock state expansion of the coherent state 
Ia). D 
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3.1.2 Diagonal Representation for the Density Operator 
Using Coherent States 

Using the completeness of the Fock states, a representation for the density 
operator p in terms of these states is obtained by multiplying on the left and 
right by the unit operator expressed as a sum of outer products: 

00 

L Pn,mln)(mJ, (3.11) 
n,m=O 

with Pn,m = (nJpJm). The Fock states are orthogonal as well as being com-
plete, as is the common situation for a set of basis states. The coherent states 
are not orthogonal (Proposition 3.4). However, they are complete (Proposi-
tion 3.5), and this is all we need to define a representation for p analogous to 
(3.11). From (3.9), we may write 

p = J d2 a Ja)(ai) J 
= : 2 Jd2a (3.12) 

Glauber has defined what he calls the R representation, expanding the density 
operator in the form [3.3] 

p = :2 J d2a J e-!la12 e-!1!312 R(a*, m, (3.13) 

where 

00 a*nf3m 

= L VI 1 Pn,m· 
n,m=O n.m. 

(3.14) 

Clearly, this representation follows the familiar methods for specifying an 
operator in terms of its matrix elements; the exponential factors appearing 
in (3.13) merely simplify the relationship between the function R(a*, and 
the Fock state matrix elements Pn,m· The P representation is rather different. 

The Glauber-Sudarshan P representation relies on the fact that the co-
herent states are not orthogonal. In technical terms they then form an over-
complete basis, and, as a consequence, it is possible to expand p as a diagonal 
sum over coherent states: 
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(3.15) 

This representation for p is appealing because the function P( a) plays a role 
rather analogous to that of a classical probability distribution. First, note 
that 

J d2a P(a) = J d2a (ala)P(a) 

= tr (! d2a la)(aiP(a)) 

= tr(p) 

= 1, (3.16) 

where we have inserted (ala) = 1 and used the cyclic property of the trace. 
Thus, P(a) is normalized like a classical probability distribution. Note also 
that for the expectation values of operators written in normal order (creation 
operators to the left and annihilation operators to the right), on substituting 
the expansion (3.15) for p, 

(atPaq) = tr(patPaq) 

= tr (! d2a la)(aiP(a)atPaq) 

= J d2a P(a)(alatPaqla) 

= J d2a P(a)a*Paq. (3.17) 

Normal-ordered averages are therefore calculated in the way that averages are 
calculated in classical statistics, with P( a) playing the role of the probability 
distribution [(3.16) is a special case of this result with p = q = 0]. We will 
introduce the notation 

(3.18) 

and write 
(3.19) 

As mentioned earlier, obtaining normal-ordered averages in this way is par-
ticularly useful because measurements in quantum optics have a direct re-
lationship to such normal-ordered quantities, a consequence of the fact that 
photoelectric detectors work by the absorption of photons. 

The analogy between P( a) and a classical probability distribution over 
coherent states must be made with reservation, however. In the Fock-state 
representation Pn,n = (nlpln) is an actual probability; it is the probability 
that the oscillator will be found in the state In) - the probability that the 
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field mode will be found to contain n photons. But because of the orthogo-
nality of the Fock states, only a limited class of states can be represented by 
the diagonal matrix elements Pn,n alone. There exist states whose complete 
representation requires that at least some nonzero numbers Pn,m = (nlplm), 
n =I m, be specified in addition to the probabilities Pn,n- The coherent states 
are not orthogonal, and it is therefore possible to make a diagonal expansion 
for p that is not restricted in the same way; the expansion (3.15) does not 
automatically require that the off-diagonal coherent state matrix elements 
vanish. With the help of (3.8), from (3.15) we obtain 

(alpl,8) = j d2 >.. (ai>..)(>..I,B)P(>..) 

= f d2>-.e-HX-al2 e-H>·-.812 P(>..). (3.20) 

There is no need for this to vanish when a =I ,8. There is a price to pay 
for this versatility, however. We must now accept that P(a) is not strictly a 
probability. When a = ,8, (3.20) gives 

(alpla) = f d2).. e-l>.-ai2 P(>..). (3.21) 

Since e-l>.-al2 is not a 8-function, (alpla) =I P(a). Only when P(>..) is suffi-
ciently broad compared to the Gaussian filter inside the integral in (3.21) does 
it approximate a probability. Also, although the probability (alpla) must be 
positive, (3.21) does not require P(a) to be so. Thus, unlike a classical prob-
ability, P(a) can take negative values over a limited range [although (3.16) 
must still be satisfied]. P(a) is not, therefore, a probability distribution, and 
for this reason it is often referred to as a quasidistribution function. We will 
simply use the word "distribution". In fact, this is quite correct usage if "dis-
tribution" is interpreted in the sense of generalized functions. We will see 
shortly that P(a) is, most generally, a generalized function. 

3.1.3 Examples: Coherent States, Thermal States, and Fock States 

It is clear from (3.15) that the coherent state lao) - density operator p = 
lao)(aol- is represented by the P distribution 

P(a) = 8(2l(a- ao) = 8(x- xo)8(y- Yo), (3.22) 

where a= x+iy and ao = xo+iyo. Can we find a diagonal representation for 
any density operator? To answer this question we must try to invert (3.15). 
This is made possible using the relationship 
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tr(peiz*at eiza) = tr{[/ d2a la)(aiP(a)] eiz*at eiza} 

= J d2a P(a)(aleiz*at eizala) 

= Jd2aP(a)eiz*a*eiza. (3.23) 

Equation (3.23) is just a two-dimensional Fourier transform. The inverse 
transform gives 

(3.24) 

Thus, if the Fourier transform of the function defined by the trace in (3.24) 
exists for a given density operator p, we have our P distribution representing 
that density operator. A general expression for P(a) in terms of the Fock-
state representation of p follows by substituting (3.11) into (3.24) and using 
the cyclic property of the trace: 

= 2_fd2 ( ( I (iz*at)m' (izat' I )) 
2 Z L L Pn,m m ,1 , 1 n n m. n. 

n,m=O n',m'=O 

( iz t n! -iz* a* -iza ) X---:;:;:;"! (n _ n')! 8n-n',m-m' e e . 

Noting that 

oon oo m 00 00 00 00 

n=O n'=O m=O m'=O n'=O n-n'=O m'=O m-m'=O 

and changing the summation indices, with n' --+ n, m' --+ m, and n - n' = 

m - m' --+ k, we find 

( ) _ 2_! 2 J(n+k)!J(m+k)! 
P a - 2 d z L L L Pn+k,m+k k' 

n n=Om=Ok=O . 

(iz*)m (izt) -iz*a* -iza x--1---1- e e . 
m. n. 

(3.25) 
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Exercise 3.1 Substitute p = lo:o)(o:ol into (3.24) and the Fock-state rep-
resentation for this density operator into (3.25); show that both of these 
equations reproduce the P distribution (3.22) for the coherent state. For the 
thermal state 

p = (1- e-fiw/kBT)e-nwata/kBT 1 

show that (3.25) gives 

1 J 2 I 12 (A) . * * . P(o:) = _ d z e- z n e-u a e-zza 
7r2 

1 ( lo:l 2
) 

= 7r(n) exp - (n) ' 

where 

(3.26) 

(3.27) 

(3.28) 

Now, consider the P distribution representing a Fock state. We will take 
p = ll)(ll where l can be any non-negative integer. From (3.25), 

1 J 2 ( = = = l! (iz*)m (izt) P(o:) = 2 d Z L L Lbn+k,lbm+k,lki--I---1-
Jr n=O m=O k=O . m. n. 
X e -iz* o:* e -iza 

(3.29) 

where we have changed the summation index, with l - k --+ k. Since the 
summation in (3.29) does not extend to infinity, the expression inside the 
bracket is a polynomial, and it clearly diverges for lzl --+ oo. Thus, this 
Fourier transform does not exist in the ordinary sense; it would appear that 
we cannot represent a Fock state using only a diagonal expansion in coherent 
states. If, however, we write 

(3.30) 

and use the ordinary rules of differentiation inside the integral in (3.29), we 
may evaluate the integral in terms of derivatives of the 8-function. This gives 
the P distribution 

l [I 1 fJ2k 
( ) -"' . (2) 

p 0: - L.., k!(l- k)! k! fJo:kfJo:*k 8 (o:). 
k=O 

(3.31) 
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Note 3.1 We will have many occasions to take derivatives with respect to 
complex conjugate variables. It is convenient to do this by reading the com-
plex variable and its conjugate as two independent variables. This is allowed 
because 

a * (a \* 1 (a . a) . 1 (a a ) a(/1! = ao:* 0:) = 2 ax - z ay (x- zy) = 2 ax X- ayy = Q, 

(3.32a) 

and, of course, 

The mathematical theory that gives precise meaning to (3.31) is the 
theory of generalized functions [3.9-3.11] or distributions (in the technical 
sense of "Schwartz distributions" and "tempered distributions" [3.12, 3.13]). 
Within this theory the Fourier transform can be formally generalized to cover 
nonintegrable functions such as polynomials. Such Fourier transforms are not 
functions in the usual sense; (3.31) does not tell us how to associate a number, 
P(o:), with each value of the variable o:. There is certainly no way, then, to 
interpret P(o:) as a probability distribution. It is, however, a "distribution" 
in the sense defined by the theory of generalized functions. There is no need 
for us to get deeply involved with the formal theory of generalized functions. 
Those interested can study this in the books by Lighthill [3.11] and Bremer-
mann [3.13]. Nevertheless, in order to appreciate the sense in which (3.31) 
provides a diagonal representation for the Fock states we should spend just 
a little time refreshing our memories about some of the basic properties of 
generalized functions. 

Generalized functions "live" inside integrals. There, they are integrated 
against some ordinary function from a space of test functions. The value of 
the integral for a given test function is defined as the limit of a sequence 
of integrals obtained by replacing the generalized function by a sequence of 
ordinary well-behaved functions. The generalized function is then, in this 
sense, the limit of a sequence of ordinary functions. Of course, the sequence 
of functions defining a given generalized function is not unique. For example, 
for a suitable class of test functions, the 8-function acts inside an integral as 
the limit of a sequence of Gaussians: 

(3.33) 

where the strict sense of this statement is 
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100 100 2 dxt5(x)¢(x) = lim dx -e-nx ¢(x) = ¢(0). 
-oo 

(3.34) 

Here, the test function ¢(x) must be continuous and grow more slowly at 
infinity than Cealxl, with C and a constants. A sequence of functions that 
decrease faster than Gaussians at infinity would allow us to define the b-
function on a larger space of test functions; most generally, for all continuous 
functions. Thus, in formal language, generalized functions operate as func-
tionals; they associate a number (the limiting value of a sequence of ordinary 
integrals) with each function from a space of test functions. 

The derivative of a generalized function is also a generalized function, 
defined via the rules of partial integration. Taking ¢(x) = '1/J'(x) in (3.34), we 
can write 

Then, if {5' ( x) is the generalized function defined by the sequence of functions 
obtained as the derivative of the sequence defining t5 ( x) - the functions inside 
the bracket in (3.35) -the formula for partial integration is preserved: 

I: dxt5'(x)'I/J(x) =-I: dxt5(x)'I/J'(x) = -'1/J'(O). (3.36) 

More generally, for the nth derivative of the t5-function, {j( n) ( x), we have 

where 'ljJ(n)(x) is the nth derivative of '1/J(x). [Do not confuse the notation 
for the nth derivative of the b-function with the notation {5(2l(a) for the 
two-dimensional t5-function.] 

Let us now use (3.37) to see explicitly how (3.31) provides a diagonal 
representation for the Fock states. We will consider the one-photon state, the 
simplest example; the general case can be done as an exercise. For l = 1, 
from (3.31), 

Substituting into the diagonal expansion (3.15), and using (3.37) (twice for 
the two-dimensional t5-function), 
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From this we must recover p = 11)(11. Using (3.10), we note that 

= (e-1<>12 eaat IO)(Oiea*a) 
8a 8a 

=(at- a*)la)(al, 

8 8 ( I 12 t • ) -la)(al =- e- a eaa IO)(Oiea a 
8a* 8a* 

= la)(al(a- a). 

Then (3.38) readily gives the required result: 

P = IO)(OI + :a [la)(al(a- a)] la=O 

= IO)(OI + [(at- a*)la)(al(a- a) -la)(al] la=O 

= IO)(OI + (atlo)(Oia -10)(01) 

= 11)(11. 

(3.38) 

(3.39a) 

(3.39b) 

Exercise 3.2 Equation (3.31) is not always the most convenient form to use 
in calculations. Show that P(a) for the Fock state ll) takes the alternate 
forms 

P(a) = ela12 821 8(2l(a) 
l! 8al8a*1 ' 

(3.40) 

and in polar coordinates, with a = reiiJ, 

(3.41) 

Show that both of these expressions give p = ll) (ll when substituted into the 
diagonal expansion for p [Eq. (3.15)]. 

Applications of the P representation in quantum optics have largely been 
restricted to situations in which P(a) exists as an ordinary function, as it 
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does, for example, for a thermal state [Eq. (3.27)]. With the use of generalized 
functions it is actually possible to give any density operator a diagonal repre-
sentation [3.14, 3.15]. As we stated earlier, however, our main objective when 
introducing the quantum-classical correspondence is to cast the quantum-
mechanical theory into a form closely analogous to a classical statistical the-
ory. P(a) is never strictly a probability for observing the coherent state Ia), 
but it can take the form of a probability distribution, and when it does, 
this can be used to aid our intuition- as an example, the phase-independent 
distribution given by (3.27) essentially corresponds to the classical picture 
of a field mode subject to thermal fluctuations. Our intuition finds little as-
sistance from a representation in terms of a generalized function. The value 
of preserving the analogy with a classical statistical system will be further 
underlined as we now use the P representation to describe the dynamics of 
the damped harmonic oscillator. 

3.1.4 Equation 
for the Damped Harmonic Oscillator 

In Sect. 1.4.1 we derived the master equation for the damped harmonic os-
cillator: 

p = a, p] + ap a) 

+!'n(apat (3.42) 

Our goal in this section is to substitute the diagonal representation (3.15) for 
p, and convert the operator master equation into an equation of motion for P. 
Obviously, we must assume the existence of a time-dependent P distribution, 
P(a, t), to represent pat each instant t. 

After substituting for p, (3.42) becomes 

J d2 a la)(al :t P(a, t) 

= J d2a P(a, t) [- iwo (at ala) (a I Ia) (alat a) 

+ (2ala)(ala t ala) (a I Ia) (alat a) 

+ ')'ii(ala)(alat + atla)(ala atala)(al la)(alaat)]. (3.43) 

The central step in our derivation is to replace the action of the operators 
a and at on la)(al (both to the right and to the left) by multiplication by 
the complex variables a and a*, and the action of partial derivatives with 
respect to these variables. This can be accomplished using (3.2) and (3.39): 
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aia)(alat = aia)(ala* = lal 2 la)(al, (3.44a) 

at aia)(al =at ala)(al = aatla)(al =a (:a + a*}a)(al, (3.44b) 

la)(alata = la)(ala*a = a*la)(ala =a* a}a)(al, (3.44c) 

la)(alaat +a}a)(alat +a)a*la)(al, (3.44d) 

atla)(ala= (:a +a*}a)(ala= (:a +a}a)(al. 
(3.44e) 

Using these results in (3.43), after some cancelation, we find 

It is a short step to an equation of motion for P. The partial derivatives which 
now act to the right on la)(al can be transferred to the distribution P(a, t) by 
integrating by parts. We will assume that P(a, t) vanishes sufficiently rapidly 
at infinity to allow us to drop the boundary terms. Then (3.45) becomes 

Note 3.2 When integrating by parts a and a* may be read as independent 
variables, as in differentiation (Note 3.1). Explicitly, for given functions f(a) 
and g(a) (whose product vanishes at infinity), 

J d2a f(a) :ag(a) 

100 100 

1 ( a a ) = dx dy f(x, y)2 a- ia g(x, y) 
-oo -oo X Y 

= I:dxg(x,y):xf(x,y)] 

- dx [t(x, y)g(x, y)C=-oo-I: dy g(x, y) :yf(x, y)] 
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100 100 1 ( a a ) =- dx dy g(x, y)- -- i- f(x, y) 
-oo -oo 2 ax ay 

=-J d2ag(a) :af(a). 

Similarly, 

A sufficient condition for (3.46) to be satisfied is that the P distribution 
obeys the equation of motion 

aP . ) a . ) a * _ a2 J P - = -+zwo -a+ - -zwo --a +"'n--- . at 2 aa 2 aa* aaaa* 
(3.47) 

We have replaced the operator equation (3.42) by a partial differential equa-
tion for P. This is the Fokker-Planck equation for the damped harmonic 
oscillator in the P representation. 

Exercise 3.3 The question arises as to whether (3.47) is a necessary con-
dition for (3.46) to be satisfied. Multiply both sides of (3.46) on the left by 

. * t . 
e•z a e•za and take the trace to show that the necessary condition is that the 
Fourier transforms of both sides of (3.47) are equal. 

3.1.5 Solution of the Fokker-Planck Equation 

We will discuss the properties of Fokker-Planck equations in detail in Chap. 5. 
For the present let us simply illustrate how (3.47) describes the damped har-
monic oscillator. We will solve this equation for an initial coherent state la0 ). 

Thus, we seek the Green function P(a, a*, tlao, a0, 0), with initial condition 

P(a, a*, Olao, a0, 0) = 8(2l(a- ao) = 8(x- xo)8(y- Yo). (3.48) 

From now on we display P with two complex conjugate arguments consistent 
with the interpretation of derivatives and integrals explained below (3.31) 
and (3.46). 

It is convenient to transform to a frame rotating at the frequency w0 , with 

(3.49) 

and 
P(a, a*, t) = F(ii, ii*, t). (3.50) 

We have 
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aP aP aP aa aP aa* 
8t = 8t + aa 8t + aa* 8t 

= aP _ iwo (a aP _a* aP) 
at aa aa* 

= aP - iwo (!!_a- _!!_a*) P. 
at aa aa* 

After substituting for aP I at from (3.4 7)' 

or, in terms of the real and imaginary parts of a, 

(3.51) 

(3.52) 

(3.53) 

where a = x +if}. Solutions can now be sought using separation of variables. 
We write 

P(x, iJ, t) = x(x, t)Y(iJ, t), 

where the functions X and Y satisfy the independent equations 

8 X ('Y 8 _ "(fi 82 ) X 
8t = 2 ax x + 4 ax2 ' 

aY _ ( 1 .!!_ _ 1 n a2 ) Y 
at - 2 aiJ Y + 4 aiJ2 · 

(3.54) 

(3.55a) 

(3.55b) 

These are to be solved for X(x, tlx0 , 0) and Y(fj, tifJo, 0), subject to the initial 
conditions 

X(x, Olxo, O) = 8(x- xo), 
Y(iJ, OliJo, 0) = 8(i}- iJo). 

(3.56a) 

(3.56b) 

Consider (3.55a). Its solution is found by taking the Fourier transform on 
both sides of the equation. We find 

where 

U(u,tlxo,O) = j_: dxX(x,tlx0 ,0)eixu, 

and, from (3.56a), the initial condition for U is 

U(u,Oixo,O) = eixau. 

(3.57) 

(3.58) 

(3.59) 
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We then solve (3.57) by the method of characteristics [3.16]. The subsidiary 
equations are 

with solutions 

dt du dU 
1 ('"y/2)u -(1n/4)u2U' 

ue-bl2)t =constant' 

ue<nf4)u2 =constant. 

Thus, U must have the general form 

(3.60) 

(3.61a) 

(3.61b) 

(3.62) 

where ¢ is an arbitrary function. Choosing ¢ to match the initial condition 
(3.59), 

U(u, tlxo, 0) = exp[ixoue-b/2lt] exp[- (n/4)u2(1- e-7 t)]. (3.63) 

Taking the inverse Fourier transform, we have 

X(x, tixo, o) 

= 2_100 duU(u,tlxa,O)e-ixu 
27r -oo 

1100 =- du exp[ -iu(x- x0e-hl2lt)] 
27r -oo 

x exp[- (n/4)u2(1-

Equation (3.55b) can be solved in a similar fashion, whence, 

F(x, y, tlxo, iJo, O) 

(3.64) 

1 [ (x- x0e-b/2lt) 2 + (iJ _ y0 e-h/2lt) 2] 
= exp -

1rn(l - n(l - ' 

(3.65) 

or, equivalently, 

(3.66) 

Then the P distribution for a damped coherent state is given by 
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P(a, a*, tja0, a(;, 0) is a two-dimensional Gaussian distribution. Thus, for 
this example the P distribution has all the properties of a probability dis-
tribution. The mean of the Gaussian gives the oscillating and decaying os-
cillator amplitude calculated previously directly from the master equation 
[Eq. (1.78)]: 

(3.68) 

The phase-independent variance describes the thermal fluctuations added to 
the coherent amplitude by the oscillator's interaction with the reservoir: 

((ata)(t))- (at(t))(a(t)) = ((a*a)(t))p- (a*(t))p(a(t))p 

= [(x2(t))p+ (y2(t))p J - [ 
= fi(1- e-7 t). (3.69) 

For an initial coherent state, (at(t))(a(t)) = ja0j2e--yt = ((ata)(O))e-'Yt, and 
therefore (3.69) also agrees with our previous calculation [Eq. (1.80)]. In the 
long-time limit the coherent amplitude decays to zero and the variance of 
the fluctuations in each quadrature of the complex amplitude grows to n/2. 
A comparison of (3.67) with (3.27) shows that the oscillator reaches ather-
mal state with mean photon number fi equal to the mean photon number 
for a reservoir oscillator of frequency wo. Figure 3.1 illustrates these dynam-
ics with P(a, a*, tja0, a(;, 0) represented by a single circular contour of ra-
dius J(n/2)(1- e--yt). For a Gaussian, the mean and variance determine all 
higher-order moments. Hence, (3.68) and (3.69) determine all of the normal-
ordered operator averages for the damped oscillator [Eq. (3.19)]. Using the 
P representation we have put the statistical properties of the quantum-
mechanical oscillator into a correspondence with a classical statistical de-
scription in terms of the phase-space variables x and y. (For a mechanical 
oscillator the coordinate and momentum variables are q = xJ2njmw and 
p = y)2nmw, respectively.) 

3.2 The Characteristic Function 
for Normal-Ordered Averages 

We now look at an alternative way of defining the P representation and 
deriving an equation of motion for the P distribution. This second approach 
leaves the relationship to coherent states somewhat hidden, but introduces a 
method that can readily be generalized - to define representations based on 
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0 

X 

Fig. 3.1 Time evolution of P(a, a*, tl ao, a0, 0) 
[Eq. (3.67)]. The center of the Gaussian distri-
bution follows the spiral curve while the width 
of the distribution increases with time, as il-
lustrated by the filled circular contours Ct(B) = 
aoe-h/2)t e-iw0 t + eieJ(n/2)(l _ e--rt). 

different operator orderings, and to define representations for collections of 
two-level atoms. 

We have recently met two relationships that might suggest the new ap-
proach to us. In (3.23) and (3.24), and in Exercise 3.3, we saw that the 
Fourier transform of P(a, a*) played an important role. Why not begin from 
the function appearing on the left-hand side of (3.23) and define P(a, a*) to 
be its Fourier transform. Indeed, this approach is suggested on the following, 
more general grounds. 

3.2.1 Operator Averages and the Characteristic Function 

The function 
(3. 70) 

appearing on the left-hand side of (3.23) is a characteristic function in the 
usual sense of statistical physics [3.17]; it determines all normal-ordered op-
erator averages via the prescription 

(3.71) 

The definition of a distribution for calculating normal-ordered averages fol-
lows quite naturally from this result. If we define P(a, a*) to be the two-
dimensional Fourier transform of xN(z, z*): 

P(a, a*)= :2 J d2z xN(z, z*)e-iz*a* e-iza 

1 != !00 
. = 7r2 -oo df.l -oo dv XN(J..l + iv, J..L- iv)e-2t(J1x-vy)' (3. 72) 

with the inverse relationship 
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xN(z, z*) = J d2a P(a, a*)eiz*a* eiza 

= i: dx i: dy P(x + iy, x- iy)e2i(f-<x-vy), 

then, from (3.71) and (3.73), 

with 

(3. 73) 

(3.74a) 

(a*Paq)P = J d2a P(a, a*)a*Paq. (3.74b) 

Equation (3.73) is the same as (3.23), and (3.74) reproduces (3.19); the 
P(a, a*) defined in this way is the distribution introduced in (3.15) to give a 
diagonal expansion in terms of coherent states. Let us see how the Fokker-
Planck equation for the damped harmonic oscillator can be derived by start-
ing from this new definition of P( a, a*). 

3.2.2 Derivation of the Fokker-Planck Equation 
Using the Characteristic Function 

We will derive an equation of motion for the characteristic function and then 
use the relationship between xN(z,z*,t) and P(a,a*,t) to convert this into 
an equation of motion for P(a, a*, t). 

From the definition of XN, 

axN a ( . • t . ) ( . • t . -- = -tr pe'z a e2Za =tr pe'Z a e'za). 
at at 

(3.75) 

Then, the master equation (3.42) gives 

axN =tr{[-iw0(atap- pat a)+ J':(2apat- atap- pat a) 
at 2 

+rn(apat +at pa- a tap- paat)] eiz*at eiza }· (3. 76) 

Our aim is to express each of the nine terms on the right-hand side of (3.76) 
in terms of XN and its derivatives with respect to (iz*) and (iz). For two of 
the nine terms this can be achieved directly; we may write 

tr ( apa t eiz* at eiza) = tr (pat eiz* at eiza a) 

az 
= a(iz*)a(iz) XN' (3.77) 
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where we have simply used the cyclic property of the trace. The remaining 
seven terms require a little more algebraic manipulation; but the goal is 
always the same - to rearrange the terms inside the trace so that at is to 
the left of eiz* at and a is to the right of eiza. Then, at and a can be brought 
down from the exponentials by differentiation with respect to ( iz*) and ( iz), 
respectively. Generally, the rearrangement may require us to pass at through 

. . * t 
the exponential e•za, or a through the exponential e•z a . For this purpose 
we use 

eizaate-iza =at +iz, 
. * t . * t e-•z a ae•z a =a+ iz*. 

(3.78a) 

(3.78b) 

Equation (3.78a) follows by writing at(iz) = eizaate-iza, with at(o) =at; 
then differentiate with respect to ( iz): 

Thus, 

= eiza(aat- ata)e-iza = 1. 
d(zz) 

at(iz) = at(o) + iz =at+ iz. 

Equation (3.78b) is obtained as the Hermitian conjugate of (3.78a) and the 
replacement z* -+ - z*. 

Now, using (3. 78) and the cyclic property of the trace, the remaining 
terms in (3.76) are: 

tr(atapeiz*at eiza) = tr(peiz*at eizaata) 

= tr [peiz*at ( eizaat e-iza) eizaa] 

= tr[p(at + iz)eiz*at eizaa] 

= -.- + iz tr pe'z a e•zaa ( 8 )(·•t·) 
8(zz*) 

iz) XN' (3.79) 

(3.80) 
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tr(paat eiz*at eiza) = tr[p(ata + 1)eiz*at eizal 

= [ + iz*) + 1 J XN' (3.81) 

which follows from (3.80); the last term is left as an exercise: 

Exercise 3.4 Show that 

( I 12 . a . * a a2 ) ( ) 
= 1 - z + zz a(iz) + zz a(iz*) + a(iz)a(iz*) XN" 3"82 

After substituting (3.77) and (3.79)-(3.82) into (3.76) the equation of 
motion for XN(z,z*,t) is given by 

ax N [ ( 1 . ) a ( 1 . ) * a _ *] 8t = - 2 + ZWo z az- 2- ZWo z az* - "(nZZ XN" (3.83) 

To pass to an equation of motion for P(a, a*, t) we use the Fourier transform 
relation (3.73) and exchange the differential operator in the variables z and 
z* for one in the variables a and a*: 

Jd2 aP(a,a*,t) iz*a* iza 
a at e e 

= J d2a P(a, a*, t) [- + iw0 ) z :z - - iwo) z* 

- "(fizz*] eiz* a* eiza 

= J d2a P(a, a*, t) [- + iw0 ) (ia) - - iwo) (ia*) 

-"(n eiz*a* eiza. (3.84) 

The action of the derivatives on the right-hand side of (3.84) can be moved 
from the product of exponentials, eiz*a* eiza, to P(a, a*, t) by integrating by 
parts; we took the same step in passing from (3.45) to (3.46). Once again we 
assume that P(a, a*, t) vanishes sufficiently fast at infinity to justify dropping 
the boundary terms. Then, (3.84) becomes 

d aen a e'za_ = d aen a eua - +iw -a J 2 . • • . aP j 2 . • • . [("Y ) a 
at 2 ° aa 

( 1 ) a a2 
] + - - iwo -a* + "(n--- P. 

2 aa* aaaa* 
(3.85) 
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This is the Fourier transform of the Fokker-Planck equation derived in 
Sect. 3.1.4. It is precisely the equation derived from (3.46) in Exercise 3.3. 
Thus, after inverting the Fourier transform we arrive once again at the 
Fokker-Planck equation (3.4 7). 

4. Quantum-Classical Correspondence 
for the Electromagnetic Field II: 
P, Q, and Wigner Representations 

The definition of the P representation as the Fourier transform of the normal-
ordered characteristic function can be generalized by simply taking different 
characteristic functions - characteristic functions that give operator averages 
in other than normal order. Here we will look at two new representations: the 
Q representation, which is defined in terms of the characteristic function that 
gives operator averages in antinormal order, and the Wigner representation, 
defined in terms of the characteristic function that gives operator averages 
in symmetric, or Weyl, order. This is not a comprehensive list. Cahill and 
Glauber [4.1], and Agarwal and Wolf [4.2] have introduced formalisms in 
which whole classes of different representations are defined. In particular, 
Agarwal and Wolf take the possibilities to their ultimate extreme and de-
velop a very general and elegant formalism which they call the phase-space 
calculus. These general formalisms are not of much interest, however, when 
it comes to applications. The P, Q, and Wigner representations are the only 
examples that have traditionally seen any use in quantum optics. They are 
special cases within the classes defined by Cahill and Glauber, and Agarwal 
and Wolf. In Volume 2 we will meet one recent addition to the list which has 
been used quite extensively, particularly in the treatment of squeezing and 
related nonclassical effects. This is the positive P representation introduced 
by Drummond and Gardiner [4.3]. As the name suggests, the positive Prep-
resentation is closely related to the Glauber-Sudarshan P representation. 
We postpone its discussion, however, until we have acquired the background 
needed to appreciate its special purpose and application. Certain properties 
of the positive P representation are still only partly understood; this repre-
sentation therefore belongs with the modern research topics that are taken 
up in Volume 2. 

For additional reading on the Q and Wigner representations reference 
may be made to Louisell [4.4] and Haken [4.5]. Also, Hillery et al. provide a 
comprehensive review with numerous references [4.6]. 

H. J. Carmichael, Statistical Methods in Quantum Optics 1
© Springer-Verlag Berlin Heidelberg 1999
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4.1 The Q and Wigner Representations 

4.1.1 Antinormal-Ordered Averages and the Q Representation 

If we wish to calculate antinormal-ordered averages, the rather obvious gen-
eralization from (3. 70) is to define the characteristic function 

( 4.1) 

Then in place of (3.71), antinormal-ordered operator averages are given by 

(aqatP) = tr(paqatP) 

()P+q I 
= ,:::.(· *)P,:::.(· )qXA(z,z*) . 

u ZZ u ZZ z=z*=O 
( 4.2) 

If we define the distribution Q(a,a*) as the Fourier transform of xA(z,z*): 

Q(a, a*)= :2 J d2z XA(z, z*)e-iz*a* e-iza 

1 100 100 . = 7r2 -oodJ.L -oodvxA(J.L+iv,J.L-iv)e-2•(11-x-vy), ( 4.3) 

with the inverse relationship 

XA(z,z*) = Jd2aQ(a,a*)eiz*a*eiza 

=I: dx I: dy Q(x + iy, x- iy)e2i(11-x-vy), (4.4) 

corresponding to (3.74), we now have 

( q tP) _ d2 Q( *) iz a iza ()P+q J . * I 
a a - o(iz*)Pa(iz)q a a,a e e z=z*=O 

= (a*Paq)Q, (4.5a) 

with 
(4.5b) 

The Q distribution, so defined, has a very simple relationship to the co-
herent states. Consider (4.3) with xA(z, z*) substituted explicitly from (4.1) 
and the unit operator judiciously introduced in the form (3.9). We find 

Q(a, a*) = : 2 J d2 z tr [peiza J d2 AlA.) (A. I) eiz*at] e-iz*a* e-iza 

= : 3 J d2z J d2 A (A.Ieiz*at peizaiA.)e-iz*a* e-iza 

= J d2 A (A.IpiA.)[:2 J d2zeiz*(,\*-a*)eiz(-\-a)] 
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= 

1 
= -(alpla). (4.6) 

7r 

Thus, 1rQ(a, a*) is the diagonal matrix element of the density operator taken 
with respect to the coherent state Ia). It is therefore strictly a probability -
the probability for observing the coherent state Ia). This immediately gives 
us the relationship between Q and P. 

From (3.21) and (4.6), 

Q(a, a*)= J d2 A e-1>-.-n/ 2 P(>., >.*). (4.7) 

Note 4.1 It can be shown that the diagonal matrix elements (alpla) specify 
the density operator completely. Then the convolution ( 4. 7) forms the basis 
of formal proofs that every density operator may be given a diagonal repre-
sentation if Pis allowed to be a generalized function. See [4.7] and [4.8] for 
the details. 

Another useful result is the relationship between the characteristic func-
tions XA (z, z*) and xN(z, z*). We will make use of this shortly to derive the 
Fokker-Planck equation for the damped harmonic oscillator in the Q repre-
sentation. The relationship follows from a special case of the Baker-Hausdorff 
theorem [4.9]: If 6 1 and 62 are two noncommuting operators that both com-
mute with their commutator, then 

(4.8) 

Since the commutator of a and at is a constant, this result can clearly be 
applied to the exponentials in the definitions of xN(z, z*) and xA (z, z*). It 
follows from (3.70) and (4.1) that 

XA(z, z*) =: tr(peizaeiz*at) 

= tr(peiza+iz* at) e- iz/ 2 

= tr(peiz*at eiza)e-lz/ 2 

= e-iz/2 XN(z, z*). (4.9) 

Exercise 4.1 Use (4.9) to derive (4.7) directly from the definitions of the Q 
and P distributions [Eqs. (4.3) and (3.72)]. Also, use both (3.40) and (3.41) 
to show that (4.7) gives the correct Q distribution for the Fock state ll) -
namely; 
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(4.10) 

An alternative relationship between the Q and P distributions follows 
from (4.9). Using (4.3) and (4.9), 

Then, writing xN(z, z*) as the Fourier transform of P(>.., )...*), we have 

Q(a,a*) 

= : 2 j d2z e-lzl 2 J d2)... P(>.., )...*)eiz* .A* eiz.Ae-iz*c<* e-iza 

= :2 J d2z J d2 >.. P(>..,)... *) [ exp (a:;)...*) eiz* .A* eiz>-] e-iz*a* e-iza 

= :2 J d2z J d2)... [exp (a:;)...*) P(>.., >..*)] eiz*(.A*-a*)eiz(.A-a)' 

where the last line follows after integrating by parts. The integral with respect 
to z gives a 6-function and we find 

Q(a, a*) = exp ( a:;a*) P(a, a*). (4.11) 

Note 4.2 If (4.11) is to hold for the coherent state Ja0 ), (4.7) and (3.22) 
require that we prove the rather unlikely looking result 

exp --- b(2l(a- ao) = -e-la-aol . ( a2 ) 1 2 

aaaa* H 

In spite of its unlikely appearance, this result follows from the limit defining 
the b-function [Eq. (3.33)] and 

( 4.12) 

Equation (4.12) can be proved using the identity (4.46): 
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ex e-nla12 = (nlo:l)2k 1 

p oo:oo:* k! (1 + n)k+l 
k=O 

= _1_e-nl<>l2 en21<>12 /(l+n) 
1+n 

= _1_e-nla12 /(l+n). 
1+n 

4.1.2 The Damped Harmonic Oscillator in the Q Representation 

A Fokker-Planck equation for the damped harmonic oscillator can be derived 
in the Q representation by following the same steps as in Sect. 3.2.2. A 
convenient shortcut is available, however; we can use the relationship ( 4.9) 
between xN(z,z*) and xA(z,z*) and the equation of motion (3.83) for XN to 
quickly arrive at the equation of motion for x A: 

OXA - -lzl2 OXN 
7ft- e fit 

-lzl 2 [ (' · ) [) (' · ) * [) - *] = e - - + ZWo Z-- -- ZWo Z -- rnzz X 2 OZ 2 oz* N 

+z) 

- rnzz*] e-lzl2 XN 

= [- (1 + iwo) z.!!_ - (1 - iwo) z* _!!___ - r( n + 1 )zz*] x . 2 OZ 2 oz* A 
(4.13) 

This is the same as the equation of motion for XN, except for the replacement 
n ---+ n+ 1. We can therefore write down the corresponding equation of motion 
for Q directly from (3.47): 

8Q [( / . ) [) ( / . ) [) * (- ) [)2 ] - = - + ZWQ -O: + - - ZWQ --0: + / n + 1 --- Q. at 2 ao: 2 oo:* ao:oo:* (4.14) 

This is the Fokker-Planck equation for the damped harmonic oscillator in the 
Q representation. 

We exploit the relationship between the Fokker-Planck equations in 
the P and Q representations further to solve (4.14). The Green function 
Q(o:, o:*, tio:o, o:0, 0), which has initial condition 

Q( o:, o:*, Olo:o, o:0, 0) = b(2) ( o: - o:o) = b(x - xo)b(y- Yo), ( 4.15) 

follows directly from (3.67) in the form 
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It is important to realize that while the Green function in the P rep-
resentation describes an oscillator that is initially in a coherent state -
P(a, a*, tlao, a0, 0) = P(a, a*, t)p(O)=Iao)(aol -the Green function in the Q 
representation does not describe an oscillator initially in a coherent state; a 
8-function in the Q representation does not correspond to a coherent state. In-
deed, (4.6) tells us that the Q distribution for an initial state p(O) = lao)(aol 
is 

Q( a, a*, 0) p(O)=Iao) (ao 1 = I (lao) (ao I) Ia) 
7f 

= (alao) 12 
7f 

= 
' 7f 

(4.17) 

where we have used (3.8). The time evolution of the Q distribution for this 
initial state is then calculated using 

Q(a, a*, t)p(O)=Iao)(aol 

= J d2 A Q( a, a*, ti.A, A*, O)Q(>., A*, 0) p(O)=Iao) (ao 1· ( 4.18) 

Substituting (4.16) and (4.17) into (4.18), and making the change of variable 
>.e-("y/2)te-iwot --+ >., we have 

(4.19) 

This integral is a two-dimensional convolution; therefore, the Fourier trans-
form of the left-hand side is given by the product of the Fourier transforms 
of the bracketed terms in the integrand; of course, the Fourier transform of 
the left-hand side is the characteristic function xA(z, z*, t)p(O)=Iao)(aol· Thus, 
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XA(z, z*, t)p(O)=I<>o)(<>ol = exp [ -lzl2(n + 1)(1- e--yt)] 

X { exp [ -1z12e--yt] }, ( 4.20) 

with o:0 (t) = o:0e-hl2)te-iwot. The inverse transform gives the Q distribution 
for a damped coherent state: 

Q(o:, a:*, t)p(O)=I<>o)(<>ol 
1 [ Ia: _ o:oe-b/2)te-iwot12J 

= 1r[1 + n(1- e-"Yt)] exp - 1 + n(1- e-"Yt) · (4·21) 

Compared with the solution for the P distribution [Eq. (3.67)], the 
solution ( 4.21) for the Q distribution shows one simple difference - the 
phase-independent variance [variance of x = Re(o:) or y = Im(o:)] is now 
(n/2)(1 - e--yt) + 1/2 rather than (n/2)(1- e--yt). Thus, the time evolution 
of the Q distribution can be represented as in Fig. 3.1, but with a circular 
contour of somewhat larger radius; in particular, the Q distribution has a 
width at t = 0 given by the initial condition (4.17), whereas the P distribu-
tion begins as a 8-function; when n = 0, this initial width is preserved for all 
times. We find then that the Q distribution has a width even in the absence 
of thermal fluctuations. We have again set up a correspondence with a clas-
sical statistical process; but now there is noise where before there was none. 
What can this mean? The answer to this question illustrates an important 
point about the fluctuations at the "classical" end of the quantum-classical 
correspondence. Although thermal fluctuations from the reservoir are not 
too quantum mechanical - they should be present in a classical theory of 
damping also - in general, the fluctuations observed in the distributions de-
rived via the quantum-classical correspondence have a quantum-mechanical 
origin. They are manifestations of the probabilistic character of quantum me-
chanics, and arise through the noncommutation of the quantum-mechanical 
operators. Therefore, the fluctuations that appear in the classical stochastic 
processes that correspond to a quantum-mechanical system via different op-
erator orderings are different. In our present example, the difference in the 
variances of the P distribution and the Q distribution arises to preserve the 
boson commutation relation. From (3.74) and (3.67), we calculate 

((ata)(t))- (at(t))(a(t)) = ((o:*o:)(t))p- (o:*(t))p(o:(t))p 

= n(1 - e--yt), 

while from (4.5) and (4.21) we calculate 

((aat)(t))- (at(t))(a(t)) = ((o:*o:)(t))Q- (o:*(t))Q(o:(t))Q 

= n(1 - e--yt) + 1. 

(4.22a) 

(4.22b) 

The extra fluctuations in the Q representation, which give the "+ 1" in 
(4.22b), are just what are needed to preserve the expectation of the com-
mutator- ([a, at](t)) = 1. 
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4.1.3 Antinormal-Ordered Averages Using the P Representation 

We should not be misled into thinking that the P and Q distributions are 
inadequate on their own for calculating operator averages in arbitrary order. 
Of course, an average in antinormal order can first be normal ordered so 
that moments of the P distribution can be used to calculate the average of 
the resulting normal-ordered object. Antinormal-ordered averages can also be 
evaluated, however, directly from the P distribution, without first reordering 
the operators. Consider (4.2) with xA(z, z*) written in terms of xN(z, z*) 
using (4.9). An arbitrary antinormal-average can be calculated from there-
lationship 

- 8P -JzJ2 (· * _!__)q ( *)I 
- 8(iz*)Pe tZ + 8(iz) XN z,z z=z*=O 

_ -lzJ 2 (· _8 )P(· * _!__)q ( *)I 
- e tZ + 8(iz*) + 8(iz) XN z, z z=z*=O 

8P (· * 8 )q ( *)I 
= 8(iz*t tZ + 8(iz) XN z, Z z=z*=O. 

Substituting for xN(z, z*) from (3.73), we have 

t I 2 8P ( 8 )q 0 • • • I (aqap)= daP(a,a*) ·*P iz*+-.- e'z"'e'z"' 
8( tz ) 8( z=z• =0 

I 2 
( 

8 )q . . . . I = d a P(a, a*) -* +a a*P e•z "' e•za . 
8a z=z*=O 

We now integrate by parts, setting P(z, z*) and its derivatives to zero at 
infinity, to arrive at the result 

(aqatP) = ld2aa*P(a-

Exercise 4.2 Prove also that 

and 

(aqatP) = J d2a aq (a*- :a r P(a, a*), 

(atPaQ) = J d2a a*P (a+ Q(a, a*), 

(atPaq) = jd2aaq(a* + :ar Q(a,a*). 

(4.23a) 

(4.23b) 

(4.24a) 

(4.24b) 
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As an illustration, let us calculate ((aat)(t)) for the damped harmonic 
oscillator using (4.23a) and the Green function solution for the P distribution 
[Eq. (3.67)]. We set a 0 (t)equive-hf2)te-iwot and then 

Jd2 *[ a- ao(t) J{ 1 [ !a- ao(t)! 2
]} = a a a + exp - .:......,. _ ___;_..:....:,-

n(1 - e-"Yt) 1I'n(1 - e-"Yt) n(1 - e-"Yt) 

= j d2a {a*[a- ao(t)][1 + n(1 _1e_"Yt)] + a*ao(t)} 

x { 1I'n(1 e-"Yt) exp [- }· 

If A is a constant, 

We can therefore replace a* by a* - a0(t) in the first term in the integrand 
(this adds zero to the integral) and perform the resulting integrals to obtain 

= n(1- e-"Yt) + 1 + !ao(tW 

= ((ata)(t)) + 1, 

where the last line follows from (3.68) and (3.69). We have arrived at the 
result that would be obtained by first writing aa t in normal order and then 
using moments of the P distribution to evaluate the normal-ordered operator 
average. 
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4.1.4 The Wigner Representation 

The Wigner representation is introduced by defining a third characteristic 
function: 

Xs(z,z*) = tr(peiz*at+iza). (4.25) 

The Wigner distribution W(o:, o:*) is the Fourier transform of x8 (z, z*): 

W(o:, o:*) = :2 J d2z Xs(z, z*)e-iz*a* e-iza 

1 1CXl 1CXl . = 7r2 -= dJL -= dv x8 (JL + iv, JL- iv)e-2'(1-'x-vy), (4.26) 

with the inverse relationship 

Xs(z, z*) = J d2o: W(o:, o:*)eiz*a* eiza 

= i: dx i: dy W(x + iy, X- iy)e2i(,.x-vy). (4.27) 

The relationship between the Wigner distribution and operator averages 
is a little more complicated than the relationships that connect the P and 
Q distributions with operator averages. In terms of position and momentum 
variables (proportional to x andy respectively) the moments of W(o:, o:*) give 
the averages of operators written in Weyl order [4.10]. Details can be found in 
the review by Hillery et al. [4.6]. The relevant quantities for quantum optics 
are operator averages corresponding to moments of the complex variables o: 
and o:*. These can be found as follows. The exponential in (4.25) has the 
expansion 

·•t· CXl 1 e•z a +•za = -(iz*at + iza)m 
L.... m! 
m=O 

= (iz*)n(iz)m ( tn m) 
L.... L.... 1 1 a a 8 , n.m. n=Om=O 

(4.28) 

where (atnam)s denotes the operator product written in symmetric order-
the average of ( n + m)! / ( n!m!) possible orderings of n creation operators and 
m annihilation operators: 
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(at a) 8 = (at a + a at), 

( at2a )8 = (at2a +at aat + aat2), 

(ata2)8 = + aata + a2at), 

111 

(4.29a) 

(4.29b) 

( 4.29c) 

(at2a 2)8 = i(at2a2 + ataata + ata2at + aat2a + aataat + a2at2), 
: (4.29d) 

Then, from (4.28) and the definition of x8 (z, z*) [Eq. (4.25)], symmetric-
ordered operator averages are given by 

(4.30) 

substituting for x8 (z, z*) in terms of W(a, a*) [Eq. (4.27)] gives 

tP q _ 2 * iz <> iza (]PH J * * I ((a a )s)- o(iz*)PfJ(iz)q d aW(a,a )e e z=z*=O 

(4.31a) 

with 

(4.31b) 

Note 4.3 We have defined the Wigner distribution W(a, a*) to be normal-
ized such that J d2a W(a, a*) = 1. The Wigner distribution is often defined 
with a different normalization, such that J d2a W(a, a*) = 1r. This is the 
case in [4.4] and [4.6]. With the alternative definition W(a, a*) is the classi-
cal function associated with the density operator p by writing it as a power 
series in symmetric-ordered operators (atPaq)s and replacing each term in 
this series by a*Paq (see Sect. 4.3.1). 

The quantum-classical correspondence defined in terms of symmetric-
ordered operators (also antinormal-ordered operators) is not really the most 
convenient for applications in quantum optics because it is normal-ordered 
averages that relate directly to quantities measured with detectors that ab-
sorb photons. However, often only low-order moments are of interest and the 
symmetric ordering is then easily untangled using ( 4.29a)-( 4.29d). More gen-
erally, a symmetric-ordered operator can be written in normal order in the 
following way. With the help of the Baker-Hausdorff theorem [Eq. ( 4.8)] we 
write 
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(atpaq) = e•z a +•za [)P+q .• t . I 
8 8(iz*)P8(iz)q z=z*=O 

[)P+q -.!lzl2 iz*at izal = e 2 e e . 
8(iz*l(iz)q z=z*=O 

It can then be proved by induction that 

[)P+q -.!lzl2 iz*at iza 
2 e e 

8( iz*)P 8(iz )q 

min(p,q) 1 1 p! q! ( t 1 . )p-k 
2k k! (p- k)! (q- k)! a + 2zz 

1 2 . • t . ( 1 )q-k 
X e-21zl e•z a e•za a+ 2iz* , (4.32) 

and hence, that 

min(p,q) I I 
( tP q) _ ""' 1 p. q. tp-k q-k 
a as- 2k(p-k)!(q-k)!a a . 

k=O 
(4.33) 

The Baker-Hausdorff theorem also yields the relationship between the 
characteristic functions Xs(z, z*) and xN(z, z*), and Xs(z, z*) and xA(z, z*): 

Xs(z, z*) = tr (peiz*at +iza) = tr (peiz*at eiza) e-! lzl2 = e-! lzl2 xN(z, z*), 

(4.34a) 

Xs(z, z*) =: tr(peiz*at +iza) = tr(peizaeiz*at)e!lz12 = e!lzi\A(z, z*). 

(4.34b) 

From these results relationships between the distributions W(a, a*) and 
P(a, a*), and W(a, a*) and Q(a, a*), analogous to those given in (4.7) and 
(4.11), can be obtained. The derivations are left as an exercise: 

Exercise 4.3 Show that 

and that 

W(a, a*)= J d2 A e-21A-a12 P(A, A*), 

Q(a, J d2 Ae-21A-a12W(A, A*), 

W(a, a*)= exp G 0:;a*) P(a, a*), 

Q(a, a*)= exp G 0:;a*) W(a, a*). 

(4.35a) 

(4.35b) 

(4.36a) 

(4.36b) 

4.1 The Q and Wigner Representations 113 

From the relationships (4.7) and (4.35), (4.9) and (4.34), and (4.11) and 
(4.6), the Wigner distribution appears to fall in some sense in between the P 
and Q distributions. This observation is illustrated explicitly by the example 
of the damped harmonic oscillator. There is no need for a new calculation to 
treat this example in the Wigner representation. From a comparison of (4.9) 
and (4.34a), we immediately conclude that the method of Sect. 4.1.2 will 
bring us to the following Fokker-Planck equation for the damped harmonic 
oscillator in the Wigner representation: 

aw [(' . ) a (' . ) a * (- 1 ) a2 ]w - = - + zwo -a+ - - zwo -a + 1 n + - --- . at 2 aa 2 aa* 2 aaaa* 
(4.37) 

Thus, where n appears in the Fokker-Planck equation in the P representa-
tion [Eq. (3.47)], and n + 1 appears in the Fokker-Planck equation in the Q 
representation [Eq. (4.14)], now n+ in the Fokker-Planck equation 
in the Wigner representation. The factor of carries over into the solution 
for a damped coherent state. By referring to (3.67) and ( 4.16) we see that 
the Green function W(a, a*, tlao, a 0, 0), which has initial condition 

W(a, a*, Olao, a 0, 0) = 8(2)(a- ao) = 8(x- xo)8(y- Yo), (4.38) 

is given by 

Then, using (4.35a) and the P distribution for a coherent state [Eq. (3.22)], 
an initial coherent state (p(O) = lao)(aol) is represented by the distribution 

W( * 0) _ -21<>-<>ol 2 
a, a ' p(O)=I<>o)(<>ol - e . 

1f 
(4.40) 

By following the steps used to derive (4.21) we find that the Wigner distri-
bution for a damped coherent state is given by 

W(a, a*, t)p(O)=I<>o)(<>ol 

1 [ Ia _ aoe-(r/2)te-iwot12J 
= exp- . 

n [.! + n(1 - e--rt)] .! + n(1 - e--rt) 
2 2 (4.41) 

We have now constructed a third correspondence with a classical statisti-
cal process. Here the phase-independent variance lies in between those given 
by the solutions (3.67) and (4.21); the picture of Fig. 3.1 still applies, but 
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now with a circular contour of radius J1/2 + n(1 - e-l't) representing the 
distribution. As we observed for the Q distribution, the quantum fluctuations 
added over and above those coming from the reservoir are required by the 
commutation relations and the ordering convention underlying the represen-
tation. From (4.29a), (4.31), and (4.41), we have 

[((ata)(t)) + ((aat)(t))]- (at(t))(a(t)) 

= ((ata) 8 (t))- ((at) 8 (t))((a)s(t)) 

= ((a*a)(t))w- (a*(t))w(a(t))w 
= n(1- + ( 4.42) 

This is the average of the expressions in (4.22a) and (4.22b). The 
is the contribution obtained from the boson commutation relation by normal 
ordering the operator (ata) 8 = + aat). 

4.2 Fun with Fock States 

We have followed the treatment of the damped harmonic oscillator prepared 
in a coherent state throughout our discussions of the P, Q, and Wigner rep-
resentations. For this example, each of the three distributions has all the 
properties of a probability distribution, and we can therefore associate the 
quantum-mechanical problem with each of three classical statistical descrip-
tions. We should remember, however, that the distributions obtained from the 
quantum-classical correspondence are not guaranteed to have all the proper-
ties of a probability distribution. We have already seen in Sect. 3.1.3 that the 
P distribution for a Fock state is a generalized function, involving derivatives 
of the 8-function. We now explore the representation of Fock states a little 
further. 

4.2.1 Wigner Distribution for a Fock State 

Let us derive the Wigner distribution for the Fock state \l) using (4.35a) and 
the form of the P distribution given in (3.40). We have 

W(a a*)= .X e-2IA-<>12 ..!_eiAI2 ()2l 8(2)(.X) 
' 7f l! f),Xl{),X*l 

..!_ ()2l e-2IA-<>12 eiAI21 
7f l! {),Xl{),X*l A=A*=O 

2 1 -21<>12 ()2l -2IAI2 2A<>* 2A*<> I --e e e e . 
7f [! {)_xl{),X* 1 A=A*=O 

(4.43) 
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To evaluate the right-hand side of ( 4.43) we consider the more general ex-
pression (for any complex constants A, B, and C) 

For n :::; l, it can be proved by induction that 

( 4.45) 

Using this result, with n = l, we obtain 

( 8 )l-k 
X B + a>. e-AI.\12 

( 4.46) 

where in the last line we have changed the summation index, with l - k --> k. 
The right-hand side of ( 4.43) may now be evaluated using ( 4.46): setting 
A = 1 and B* = C = 2a, the Wigner distribution for the Fock state ll) is 
given by 

l 
* - -21<>1 2 "'""" - l-k l! 2k W(a,a )-1rl!e L.) 1) k!(l-k)!k!l2al . 

k=O 
( 4.47) 

The distribution ( 4.4 7) is an ordinary, well-behaved, function. Neverthe-
less, it can clearly violate one of the conditions required of a probability 
distribution - it need not be positive. The one-photon Fock state illustrates 
this point; for l = 1, 
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(4.48) 

which is negative for lad < 

Note 4.4 It can be shown that x 8 (z, z*) is square integrable and, hence, 
that its Fourier transform W(a, a*) is always a well-behaved function; there 
is no need for generalized functions in the Wigner representation. To prove 
this result we use (4.34) and (4.1) to write 

J d2z lx8 (z, z*)l 2 = J d2z xN(z, z*)xA(z, z*)* 

1 [/ 2 .• t . ] = ;tr d Z XN(z, z*)e-•z a pe-•za . 

Then, introducing the identity in the form (3.9) and using the cyclic property 
of the trace, and the relationship between xN(z, z*) and P(a, a*) [Eq. (3.72)], 
we find 

f d2z lx8 (z, z*W = : 2 tr [/ d2a f d2z xN(z, z*)(ale-iz*at pe-izala)] 

= :2 tr [! d2a (alpla) f d2z XN(z, z*)e-iz*a* e-iza] 

= tr [p J d2 a la)(aiP(a,a*)] 

= tr(p2 ). 

The last line follows from (3.15). The square integrability of x 8 (z, z*) follows 
because tr (p2 ) :<.:; 1. 

As a simple check on our result for the Fock state Wigner distribution, let 
us evaluate (a* a )w and show that it gives the symmetric-ordered average 

+ aat) = H2(ata) + 1) = H2l + 1). (4.49) 

From (4.47) we obtain 

(a*a)w = J d2a W(a, a*)a*a 

= l! E_Jd2ae-2fof212al2kla12 
7r l! k!(l- k)! k! 

2 l l' 100 1211" =-L(-1)!-k 2 . 22k dr d¢e-2r2r2{k+l)+l 
7r k=O (k!) (l- k)! 0 0 

l! 22k27r(k+1)!_ 
(k!)2(l- k)! 2k+3 
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The integral over r has been executed by performing k + 1 integrations by 
parts. The summation on the right-hand side may now be split into two pieces 
by writing 

l (k + 1)! l 1 l 1 
L · · · (k!)2 = L · · · (k _ 1)! + L · · · k! · 
k=O k=1 k=O 

Then, changing the first summation index, with k- 1--+ k, we arrive at the 
result 

( -* ) - [ - (l-1)-k (l- 1)! k - l-k l! kl 
a a w- 2 2lf::'o( 1) k![(l-1)- k]!2 + f::'o( 1) k!(l- k)!2 

= [2l(2 -1)1- 1 + (2- 1)1] 

= + 1). 

Thus, we recover the symmetric-ordered operator average (4.49) for a Fock 
state. 

4.2.2 Damped Fock State in the P Representation 

Nothing in the derivation of the Fokker-Planck equation for the damped 
harmonic oscillator precludes its use in situations where the distribution is 
a generalized function, or takes negative values. We certainly lose the corre-
spondence with a classical statistical description under such circumstances, 
but the mathematics works just fine. The Green function for the appropriate 
Fokker-Planck equation provides all we need to find the time evolution from 
an arbitrary initial state; we simply integrate the Green function against the 
representation for the initial state. This will work even if the initial state is 
represented by a distribution that is more singular than a 6-function. For 
an interesting illustration we will calculate the P distribution for a damped 
harmonic oscillator prepared in the Fock state ll). Recall that a Fock state 
is represented by a distribution involving derivatives of a two-dimensional 
8-function. 

The Green function solution to the Fokker-Planck equation in the P 
representation is given by (3.67). Using this result and the distribution for 
an initial Fock state [Eq. (3.40)], we have 
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where the integration is performed using (3.37). Expanding the function in-
side the curly bracket, 

P(a, a*, t)p(O)=Il)(ll 

= 1 exp [- lal2 ] 
1rn(1 - n(1 -

1 821 { [ 12 - n(1 - J 
x lf 8)...l8).,*l exp -1>. n(1- e-'Yt) 

[ a*e-h/2)te-iwot] [ *ae-h/2)teiwot]}l 
x exp >. ( _ t) exp >. ( _ t) · n 1 - e I' n 1 - e I' .A=.A. =O 

The derivatives can be evaluated using (4.46), with 

the P distribution for a damped Fock state is then 

P(a, a*, t)p(O)=Il)(ll 

1 [ lal2 ] 1 - n(1 - 1 
= exp- -

7rn(1 - n(1 - l! n(1 - e-'Yt) 

l l' l' { I 12 -')'t }k l-k · · a e 
x k!(l- k)! k! n(1- n(1-

k-O (4.50) 

In the long-time limit this expression clearly approaches the Gaussian 
describing a thermal state with mean photon number n. This asymptotic 
solution is, of course, independent of the oscillator's initial state. To follow 
the evolution of P(a, a*, t)p(O)=Il)(ll for short times, it is helpful to rewrite 
(4.50) in an alternative form. We define 

4.2 Fun with Fock States 119 

- n(1 -
n(1 - and 

and then ( 4.50) reads 

P(a, a*, t)p(D)=Il)(ll 

- 1 ex [- iai2 ] -1 l-k l! 
- nn(1- P n(1- l! 6( ) k!(l- k)! 

X !',Al-k( -A>.*)k( -A>.)k. 

Equation ( 4.46) may now be used a second time, with B = C = 0, to obtain 

After resubstituting the explicit expressions for A and >., we have an alter-
native form for the P distribution for a damped Fock state: 

From this expression 

( * ) 1 1<>12 (J2l { • ( 1 P a, a, 0 (O)=Il)(ll = -e hm -_ -e ' . 
P l! fJalfJa* 1 t--->0+ nwyt 

(4.52) 

Equation ( 4.52) shows explicitly the time-reversed approach ( t ---+ 0+) of 
P(a, a*, t) to its initial form in terms of derivatives of a two-dimensional 
8-function. 

Note that if n =/= 0, P(a, a*, t) is actually a well-behaved function for all 
times t > 0. Thermal fluctuations destroy the singular character of the initial 
Fock state as soon as the interaction with the reservoir is turned on: for short 
times the singular distribution representing the initial Fock state is replaced 
by a derivative (of order 2l) of a very narrow Gaussian whose variance is 
growing linearly with time. Nonetheless, P(a, a*, t) remains unacceptable as 
a classical probability distribution for a finite time after t = 0. During the 
early part of its evolution it takes on negative values- for example, for l = 1, 
( 4.50) has the form 
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(4.53) 

This distribution takes negative values inside the circle lal 2 = n(1-
1)] during the time interval 0 < ,t < ln(n + 1) -ln n. 

Exercise 4.4 Show that (4.50) gives 

((ata)(t)) = (a*a(t))p = ze-')'t + n(1- e-'Yt), 

in agreement with (1.70). 

4.2.3 Damped Fock State in the Q and Wigner Representations 

We have seen that the Q distribution is proportional to the diagonal matrix 
elements of p in the coherent state basis, and therefore it cannot become 
negative [Eq. (4.6)]. Indeed, the Green function (4.16) and the distribution 
(4.10) representing an initial Fock state in the Q representation are every-
where positive; it is clear then that Q(a, a*, t)p(O)=Il)(ll for a damped Fock 
state will be nonnegative at all times. To calculate this distribution explicitly 
we use (4.16) and (4.10) to write 

Q(a, a*, t)p(O)=Il)(ll 

= J d2 >..Q(a, a*, ti>.., >..*, O)Q(>.., >..*, O)p(O)=Il)(ll 

= Jd2 >.. 1 ex [-Ia-
1r(n + 1)(1- p (n + 1)(1- e-'Yt) 1r l! 

1 [ lal2 ] 
= 1r(n + 1)(1- exp - (n + 1)(1-

x ..!:...!:.jd2>..1>..12Zex 
1r l! P (n + 1)(1 -
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1 [ lal 2 ] 
= 1r(n + 1)(1- e-rt) exp - (n + 1)(1- e-'t) 

1 11ood 2l+I [ 2 e-'t + (n + 1)(1- e-'t)] x - - r r exp - r ---:-----'---:--:----'--'------:-:,-----'-
7rl! 0 (n+1)(1-e-rt) 

1
211" [ 2lale-h/2)t ] 

x d¢ exp ( )( _ t)rcos¢ , o n+1 1-e' 

where r = I-AI, and ¢ = arg(.A)- arg(a) + wot. The angular integral gives a 
Bessel function. With this Bessel function expressed in its series representa-
tion we find 

Q( a, a*, t) p(O)=Il) (!I 

1 [ lal 2 ] 
= 1r(n + 1)(1- e-rt) exp - (n + 1)(1- e-rt) 

111ood 21+1 [ 2e-'t+(n)+1)(1-e-'t)] x - - r r exp - r 
1Tl! 0 (n+1)(1-e-rt) 

2 oo 1 [ rlale-h/2)t ]2k 
x 7r (; (k!)2 (n + 1)(1- e-rt) 

1 [ lal 2 ] 
= 1r(n + 1)(1- e-rt) exp - (n + 1)(1- e-rt) 

1 oo 1 [ lale-(r/2)t ]2k 
x lT (; (k!)2 (n + 1)(1- e-rt) 

x 2 dr r 2(k+l)+l exp -r2 n - e . 100 
[ 1 + - (1 -'t) ] 

o (n + 1)(1- e-'t) 

The remaining integral is performed by repeated integration by parts and 
gives 

Q(a, a*, t)p(O)=Il)(ll 

1 [ lal 2 ] 
= 1r(n + 1)(1 - e-rt) exp - (n + 1)(1 - e-rt) 

1 oo 1 [ lale-h/2)t ]2k '[(n+1)(1-e-'t)]k+l+I 
x lT (; (k!)2 (n + 1)(1- e-rt) (k + l). 1 + n(1- e-rt) · 

The Q distribution for a damped Fock state is then 
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(4.54) 

Again, this expression clearly shows the evolution to a Gaussian distri-
bution describing a thermal state in the long-time limit - now with the in-
creased variance ( n ---+ n + 1) discussed below ( 4.21). Our result does not have 
the most convenient form, however, since the summation includes an infinite 
number of divergent terms in the limit t---+ 0. Of course, Q(a, a*, 0) does not 
diverge; this is prevented by the exponential multiplying the sum. It would 
be nice to have a form that cancels the divergent sum explicitly to reproduce 
the Q distribution for the initial Fock state in an obvious way. This can be 
accomplished using the following result: 

(k + l)! k = .!!!__ _!_ k+l) 
(k!)2 x dxl k!x 

k=O k=O 
dl 

= dxl (xlex) 

l l! l! l-k dl-k X 

= L k!(l- k)! (l- k)!x dxl-ke 
k=O 

l l' l' • • k 
=e · 

k=O 
(4.55) 

The third line follows from (4.45), with A = -1, B = C = 0, and n = 1; 
also, in the last line we have changed the summation index, with l- k---+ k. 
Using (4.55), equation (4.54) may be recast to give an alternative form for 
the Q distribution for a damped Fock state: 

Q(a, a*, t)p(O)=I!)(!I 

1 [ lal2 ] 1 [(n+1)(1-e--rt)] 1 

= rr[1 + n(1 - e--rt)] exp - 1 + n(1 - e--rt) lT 1 + n(1 - e--rt) 

l l! l! { lal2e-b/2)t }k 
x L k!(l- k)! k! (n + 1)(1- e--rt)[1 + n(1- e--rt)] · 

k=O 
(4.56) 

Equation ( 4.56) produces the correct initial distribution in an obvious way 
(only the k = l term in the sum survives), and it also produces the Gaussian 
form in the long-time limit. It is clearly everywhere positive; for example, for 
l = 1. 
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( 4.57) 

which is to be compared with the result ( 4.53) for the corresponding P dis-
tribution. 

Exercise 4.5 The Wigner distribution can be derived in a similar manner. 
Show that the Wigner distribution for a damped Fock state is given by 

Like P(a, a*, t)p(O)=Il)(ll, this distribution can be negative. Analyze its be-
havior for l = 1. 

4.3 Two-Time Averages 

In Sect. 1.5 we obtained expressions for calculating two-time averages from 
an operator master equation. We have now seen that the operator master 
equation can be converted into a partial differential equation - in the case of 
the damped harmonic oscillator, a Fokker-Planck equation- by setting up a 
correspondence between p and a phase-space distribution function. How can 
the formal operator expressions given in Sect. 1.5 be cast into phase-space 
language to allow us to calculate two-time averages at the "classical" end of 
the quantum-classical correspondence? This is the question we now address. 
Answering the question in a general way requires that we first develop a little 
more formalism. The notation of this formalism is itself a bit burdensome, and 
certainly some of the calculations we eventually perform with it are rather 
arcane. It is perhaps helpful, then, to look ahead to (4.100a) and (4.100b). 
These state the result used most widely in applications; namely, that normal-
ordered, time-ordered two-time averages, such as those needed to calculation 
an optical spectrum or intensity correlation function, are given by phase-
space integrals in the P representation analogous to those met in classical 
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statistics. The effort expended with the formalism allows us to generalize 
from this result in two directions: to determine which two-time averages are 
given by similar phase-space integrals in the Q and Wigner representations, 
and to see how derivatives of the phase-space distribution must be taken, as 
in Sec. 4.1.3, if inappropriately ordered operator averages are considered. 

4.3.1 Quantum-Classical Correspondence for General Operators 

Consider the relationship defined by (3.70) and (3.72) between the opera-
tor p and the distribution P(a, a*). There is actually no reason to restrict 
this relationship to density operators; we can generalize it to set up a cor-
respondence between any system operator 6 and a function Fg) (a, a*) (we 
use "function" remembering that this may be a generalized function). As a 
generalization of the characteristic function XN(z, z*) we define 

pg)(z, z*) = 7rtr(6eiz*at eiza); 

the generalization of the P distribution is then 

F(a)(a a*)= z*)e-iz*a* e-iza 
6 ' - 7f2 6 ' ' 

with the inverse relationship 

= 

(4.59) 

(4.60) 

(4.61) 

Taken together (4.59) and (4.60) set up a correspondence between the oper-
ator 6 and the phase-space function (a, a*). In place of the relationship 
that gives normal-ordered moments in the P representation [Eqs. (3.71) and 
(3.74)] we now have the more general result 

( ' tP q) - ..!:_ oP+q -(a) * I 
tr Oa a - o(" *toC )qF6 (z,z) 

7f ZZ ZZ z=z*=O 

1 oP+q J 2 (a)( *) iz*a* izai = - 0 (. *)Po(· )q d aF6 a,a e e 
7f ZZ ZZ z=z*=O 

= (4.62) 
7f 0 

Within this scheme the P distribution is defined with 

( *)- 1 F-(a)( *) XN z, z = - P z, z , 
7f 

1 
P(a,a*) = 

7f 

(4.63a) 

(4.63b) 
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We have slipped in some changes here that need an explanation: a factor 
of 7f has been added in (4.59) and the subscript Non xN has been replaced 

by the superscript (a) on PJa). This has been done with the following in 
mind. 

Consider an operator A expanded as a power series of terms written in 
antinormal order: 

A= A(a at)=""' cCa)aqatP ' - L......t p,q ' (4.64) 
p,q 

where the are constants. Then, from (4.59), 

p,q 

- '"'c(a) av+q t ( iz*at iza) 
- 7f L..J p,q 8(iz*)P8(iz)q r e e · 

p,q 

Introducing the expansion (3.9) for the unit operator, 

L () av+q I .. = c a d2). eiz ).. eiz.>.. 
p,q 8(iz*)P8(iz)q p,q 

- 2 ""'cCa) av+q 8( ) 
- 7f L..J p,q 8(iz*)Po(iz)q z · 

p,q 

We substitute this result into ( 4.60) and integrate by parts to obtain 

L ( )! 2 ()P+q . • • . _ a -tz a -tza 

- cp,q d z8(z) 8(iz*)p8(iz)qe e 0 

p,q 

Thus, 
(4.65) 

Equations ( 4.64) and ( 4.65) state that, for operators written as an anti-
normal-ordered series, (a, a*) is obtained by replacing the operators 
a and at in that series by the complex numbers a and a*, respectively. 
Fg) (a, a*) is called the antinormal-ordered associated function for the oper-

ator 6. The superscript (a) denotes the antinormal-ordered associated func-
tion. The factor of 7f in (4.59) leads to the direct association of functions and 
operators expressed by (4.64) and (4.65), rather than with a 1/7f multiplying 
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the right-hand side of (4.65). We must be careful now not to become confused 
between our "normals" and "antinormals". In ( 4.63b) we see that P( a, a*), 
which is used to calculate normal-ordered averages, is, apart from a factor 
of 1r, the antinormal-ordered associated function for p. This relationship will 
become clearer as we follow the idea of associated functions a little further. 

Analogous definitions of normal-ordered and symmetrically ordered asso-
ciated functions for an operator can be given. We define the normal-ordered 

associated function a*) in terms of its Fourier transform (z, z*) 

introduced as a generalization of ( 4.1): We define 

( 4.66) 

and 
(n) 1 j 2 - (n) · * * · F, (a, a*)= -2 d zF, (z,z*)e-tz a e-tza, 
0 7r 0 

( 4.67) 

with the inverse relationship 

(z, z*) = J d2a (a, a*)eiz*a* eiza. ( 4.68) 

In place of the relationship that gives antinormal-ordered moments in the Q 
representation [Eq. ( 4.5)], we have 

(4.69) 

The Q distribution is proportional to the normal-ordered associated function 
for p: 

( *)- 1 p-(n)( *) XA z, z = - P z, z , 
7r 

(4.70a) 

1 
Q(a, a*)= a*). 

7r 
( 4. 70b) 

Similarly, the symmetric-ordered associated function Fg)(a,a*) is de-

fined in terms of its Fourier transform Pg\z, z*) introduced as a generaliza-

tion of (4.25): We define 

( 4. 71) 

and 
p\s)(a,a*) = e-iza. 

0 7r 0 
(4.72) 

with the inverse relationship 

Pg) (z, z*) = J d2a Fg) (a, a*)eiz*a* eiza. ( 4. 73) 
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In place of the relationship that gives symmetric-ordered moments in the 
Wigner representation [Eq. (4.31)], we have 

tr[6(atpaq)s] = (4.74) 

The Wigner distribution is proportional to the symmetric-ordered associated 
function for p: 

( *)- 1 p-(s)( *) Xs z, z = - P z, z , 
7f 

( 4. 75a) 

1 
W(a, a*)= -FJsl(a, a*). 

7f 
(4.75b) 

Relationships between the various associated functions, and between their 
Fourier transforms, can be obtained as generalizations of earlier results: equa-
tions (4.9) and (4.34) generalize to give 

z*) = pgl(z, z*) = e-lzl2 z*); 

Eqs. ( 4. 7) and ( 4.35) generalize to give 

= 
0 7f 0 

(a, a*) = A e-21>--al2 (A, A*), 
0 7f 0 

(a, a*)= A e-21>--a12 (A, A*); 
0 7f 0 

finally, Eqs. ( 4.11) and ( 4.36) generalize to give 

( 4. 76) 

(4.77a) 

(4.77b) 

(4.77c) 

F (n)( *)- (1 [)2 )p(s)( *)- ( [)2 )p(a)( *) 6 a, a - exp 2 oaoa* 6 a, a - exp oaaa* 6 a, a . 

(4.78) 

We can now understand the relationships between the various associated 
functions for p (the P, Q and Wigner distributions) and the ordered operator 
averages that are calculated from their moments in a more general context. 
First, we note the extension of the result expressed by (4.64) and (4.65) to 
normal-ordered and symmetric-ordered series. For an operator N written as 
a normal-ordered series, 

N = N(a at)="' cCn)atpaq ' - L....t p,q ' (4.79) 
p,q 

the normal-ordered associated function is obtained by replacing a by a and 
at by a*: 

( 4.80) 
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For an operator S written as a symmetric-ordered series, 

(4.81) 

the symmetric-ordered associated function is obtained by replacing a by o: 
and at by o:*: 

( 4.82) 

Now, if 6 1 and 6 2 are arbitrary system operators, and N2 = N 2 (a, at) = 6 2 
is the normal-ordered form of 6 2, we can apply (4.62) to each term in the 
series expansion of N 2 (a, at) to obtain 

tr(6162) = tr[61N2(a, at)] 

= J 
= .!_ Jd2o: ( 0:, ( o:, o:*)' 

7r 01 02 
( 4.83) 

where the last line follows from (4.80). Equations (3.74) and (4.5), glVlng 
normal-ordered and antinormal-ordered operator averages as moments of the 
P and Q distributions, respectively, are special cases of this more general re-
sult. With 6 1 taken asp, moments of the antinormal-ordered associated func-
tion for p give the averages of operators 6 2 written in normal-ordered form. 
Alternatively, with 02 taken as p, moments of the normal-ordered associated 
function for p give averages of operators 6 1 written in antinormal-ordered 
form. A similar result can be obtained by writing 6 2 as a symmetric-ordered 
series and using (4.74) and (4.82): 

tr(0162) = j d2o:Fg1l(o:,o:*)Fg}(o:,o:*). ( 4.84) 

The relationship ( 4.31) between symmetric-ordered operator averages and 
the moments of the Wigner distribution is a special case of this result. 

Note 4.5 The association given by (4.79) and (4.80) is easily proved following 
an argument analogous to that used to establish (4.65). A similar proof of 
the association given by ( 4.81) and ( 4.82) is not so straightforward because 
partial derivatives with respect to (iz) and (iz*) act in a rather complicated 

way on eiz*at +iza (see Sect. 4.3.5). A simple proof can be devised, however, 

by arguing backwards as follows: Set Fg)(o:,o:*) = o:*Po:q. What, then, is the 

operator 6 having this symmetric-ordered associated function? The answer 
to this question can be obtained by converting everything into normal order, 
using ( 4. 78) to write 
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= 
0 2 ao:ao:* 

min(p,q) 1 1 I I 
'"""' p. q. *P-k q-k 
L..t 2kk!(p-k)!(q-k)!o: 0: 0 

k=O 

Then, from (4.79) and (4.80), 

min(p,q) 1 1 I I 
6 - '"""' p. q. tp-k q-k 

- L..t 2kk!(p-k)!(q-k)!a a . 
k=O 

But (4.33) tells us that this is just the symmetric-ordered operator (atPaq) 8 . 

4.3.2 Associated Functions and the Master Equation 

We saw how to derive an equation of motion for the P distribution to replace 
the operator master equation in Sect. 3.2.2. Generally, we will refer to such an 
equation as a phase-space equation of motion. We now see what this equation 
of motion looks like in the language of our generalized formalism of associated 
functions for arbitrary operators. 

Let us start with a rather formal summary of the derivation of the equa-
tion of motion for the P distribution. From the operator master equation 
(3.1) we write 

(4.85) 

which, after substituting the explicit form of £ for the damped harmonic 
oscillator, is just (3.76). In the language of associated functions (4.85) states 
that 

a F-(a) ( *) _ F-(a) ( *) at p(t) z, z - cp(t) z, z . (4.86) 

The Fourier transform of this equation gives the equation of motion for the 
antinormal-ordered associated function for p- the P distribution (multiplied 
by 7r): 

a p(a) ( *) - p(a) ( *) at p(t) a, a - cp(t) a, a . (4.87) 

Formally, this is the Fokker-Planck equation. But the next step is needed to 
reveal its explicit form as a partial differential equation; this is the step where 
most of our effort was spent in Sect. 3.2.2. We must express FJ:;!(t) ( o:, o:*) in 

terms of F;(J)(o:,o:*), with the action of£ on the density operator p trans-
formed into the action of some differential operator on the associated function 
for p. Leaving out the details, the aim is to write 

F (a) ( *) _£(a)( * !_ _!.._) p(a) ( *) £p(t) o:, 0: - o:, 0: ' ao:' ao:* p(t) o:, 0: ' (4.88) 
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where L(al(a, a*, !/a, is a differential operator associated with C. For any 
particular example this must be found from an explicit calculation similar to 

the one in Sect. 3.2.2; for the damped harmonic oscillator 

L (a)( * a a ) 
\a, a' aa' aa* 

= (1 + iwo) (1- iwo) _!!_a*+ ryn____!!_. (4.89) 
2 aa 2 aa* aaaa* 

Now (4.87) becomes 

!!..F(a) ( *) - L(a)( * _!}_) F(a) ( *) 
at p(t) a, a - a, a ' aa' aa* p(t) a, a ' ( 4.90) 

and setting 

P(a,a*,t) = ( 4.91) 

the equation of motion for P(a, a*, t) is 

!!_P( * ) - L(a)( * _!!_) ( * ) at a, a 't - a, a ' aa' aa* p a, a 't . ( 4.92) 

More generally, we may write ( 4.88), not just for density operators, but 

for any operator 6. Then, by induction, 

(a) * _ (a) * a a (a) * [ ( )]
k 

F_ck 0 (a, a ) - L a, a , oa, oa* F0 (a, a ), ( 4.93) 

from which it follows that 

F(a) ,(a a*)= a*). 
exp(£T)0 ' 0 ' 

(4.94) 

This result, and ( 4.83) from the last section, will serve as centerpieces in 

our conversion of the expressions from Sect. 1.5 for two-time averages into 

phase-space form. 
Of course, we define the differential operators L(n)( a, a*, !/a, and 

L(sl(a,a*, !/a' which govern the dynamics of the Q and the Wigner 
distributions, respectively, in an analogous manner. For the damped har-

monic oscillator L(n)( a, a*, !/a, is given by ( 4.89) with the replacement 

n---+ n + 1, and L(sl( a, a*, 88a, is given by the same expression with the 

replacement n ---+ n + 
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4.3.3 Normal-Ordered Time-Ordered Averages 
in the P Representation 

We first set ourselves the task of finding a phase-space form in the P repre-
sentation for the average ( T 0) 

( 4.95) 

where the expression on the right-hand side is obtained from (1.102); N can be 
any system operator written as a normal-ordered series [Eq. (4.79)]. Equation 
( 4.95) provides an expression for calculating a general normal-ordered, time-
ordered, two-time average - every at to the left of every a, every at ( t + T) 
to the right of every at(t), and every a(t + T) to the left of every a(t). These 
are the averages that most interest us for applications in quantum optics. 

Using (4.83) and (4.94), we write the average (4.95) as the phase-space 
integral 

(atP(t)N(t + T)aq(t)) 

1 /d2 p(a) ( *) p(n)( *) = ;: a exp(£T)[aqp(t)atPj a, a N a, a 

Then, from (4.60) and (4.59), 

F (a) ( *) 1 /d2 p-(a) ( *) -iz*a* -iza aq p(t)atP a, a = 7r2 z aq p(t)atP z, Z e e 

= :2 J d2 z ntr [ aq p( t)a tP eiz* at eiza] e-iz* a* e-iza 

= J d2 z ntr [P( t)a tPeiz* at eizaaq J e-iz* a* e-iza 

1 J 2 [ ap+q -(a) * ] -iz*a* -iza 
= n2 d z 8(iz*)P8(iz)qFp(t)(z,z) e e . 

Substituting for from (4.61), we have 

(a) * - 1 J 2 [ ap+q J 2 (a) * iz* .X* iz.X] Faqp(t)atP(a,a)- n2 d z 8(iz*)P8(iz)q d )..Fp(t)(>,,).. )e e 

X e -iz* a* e -iza 

= I_Jd2)..p(a) (>. )..*))..*P)..qfd2zeiz*(.X*-a*)eiz(.X-a) 
7r2 p(t) ' 

= I_Jd2)..p(a) (>. )..*))..*P)..q8(2)().. _a) 
7r2 p(t) ' 

= p(a) (a a*)a*Paq p(t) ' . ( 4.97) 
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We now substitute this result into (4.96) to find (T 0) 

(atP(t)N(t + T)aq(t)) 

= .!.jd2a p(a) (a a*)a*Paq] p(n)(a a*) 
7r p(t) ' N ' · 

(4.98) 

At first sight, this expression may seem to be a rather useless formal result. 
However, a little more work casts it into a simple form- a form which might 
already have been anticipated. In simpler notation, (4.98) reads (T 0) 

(atP(t)N(t + T)aq(t)) 

= J d2a [ eL(al(o:,o:*, t"' )r P(a, a*, t)a*P aq J N(a*, a), (4.99) 

where we have used (4.91) and (4.80). Now the action of the propagator 
exp [ £(a)(a, a*, :a, T] on the 8-function 8(2 ) (a- a0 ) generates the Green 
function for the equation of motion ( 4.92). This suggests that we should write 
the operand of the propagator in (4.99) as 

P(a, a*, t)a*Paq = J d2ao 8(2)(a- ao)P(ao, 

whence (T 0), in the P representation a normal-ordered, time-ordered, 
two-time average is calculated as 

(atP(t)N(t + T)aq(t)) 

= J d2a J d2a0 agN(a, a*)P(a, a*, Tlao, O)P(ao, t) 

= ((a*Paq)(t)N(t + T))p, (4.100a) 

where we have introduced the notation 

and 

((a*Paq)(t)N(t + T))p 

= J d2a J d2a0 a*)P(a, a*, t + T; ao, t), 
(4.100b) 

P(a, a*, t + T; ao, t) = P(a, a*, Tlao, O)P(ao, t) (4.101) 

is the two-time, or joint, distribution. Thus, the correspondence with a clas-
sical statistical description has been extended one step further. Equation 
(4.100b) is formally equivalent to the formula for calculating two-time aver-
ages in a classical statistical theory. 
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4.3.4 More General Two-Time Averages 
Using the P Representation 

We have seen that antinormal-ordered one-time averages can be calculated 
using the P representation [Sect. 4.1.3]; although, with some inconvenience, 
since the expressions for these averages involve derivatives of the P distribu-
tion. The situation is similar when we consider two-time averages that are 
not in normal-ordered time-ordered form. To see how (4.100) must be modi-
fied to give these averages we will seek a phase-space expression using the P 
representation for the general average ( T 2 0) 

(4.102) 

where 
(4.103) 

and N is again the arbitrary normal-ordered operator defined by the series 
expansion ( 4. 79). Once we have a solution to this problem, results for various 
combinations of normal-ordered and antinormal-ordered operators will follow 
with little extra effort. 

We begin as before, using ( 4.83) and ( 4.94) to write 
A A At 

(Or,q,m(t)N(t + T)Os,p,n(t)) 

= , (a,a*)]F\n)(a,a*) 
7r Oa,p,nP(t)Or,q,m N 

(4.104) 

the second line follows from ( 4.60). Our aim now is to express the function 

PgL,np(t)Dr,q,Jz,z*) in terms of F;'())(z,z*) and its derivatives. Using (4.59) 
and (4.103), we have 

and then, from (3.78), 
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We write this to reflect the order of the operators in (4.103): 

F- (a) ( *) - om ( 0 . *)q or 
't , z, Z - m --) + ZZ r 

On,p,sP(t)Or,o,= o(iz*) o(iz o(iz*) 

on ( 0 . )p OS -(a) * 
x o(izt o(iz*) +zz o(iztFp(t)(z,z ). 

(4.105) 

We now substitute the Fourier transform of a*) for z*) to 

obtain 

where the last line follows after repeated integration by parts. When we 
use this result in (4.104) the integral with respect to z gives a 8-function, 
8(2) (a - .\), and the integral with respect to .\ is then trivially performed; we 

find (T 0) 
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If we proceed, as below (4.98), to express this result in terms of P(a0 ,a0,t) 
and P(a, a*, Tla0 , a0, 0), (4.107) becomes (T 2: 0) 

A A At 
(Or,q,m(t)N(t + T)On,p,s(t)) 

= J d2 a J d2a 0 N(a, a*)P(a, a*, Tlao, 0) 

*m ( a )q *r n ( * a )p sp( * t) x a 0 ao - aa() a 0 ao a 0 - aao ao ao, a 0 , . 

(4.108) 

The replacement of a tP and aq by differential operators, below ( 4.104), may 
also be performed in the reverse order; this gives an alternative to ( 4.108) in 
the form ( T 2: 0) 

A A At 
(Or,q,m(t)N(t + T)On,p,s(t)) 

= J d2a J d2a 0 N(a, a*)P(a, a*, Tlao, 0) 

n ( * a )P s *m ( a )q *rP( * t) x ao a 0 - aao ao a 0 ao - a a() a 0 ao, a 0 , . 

(4.109) 

With p = q = 0, both of these expressions reproduce the result (4.100) 
for the average (atm+r(t)N(t + T)an+s(t)). When p 'I 0, or q 'I 0, derivatives 
of P(a0 ,a0,t) are involved, as in (4.23). Equation (4.23a) can be recovered 
from either (4.108) or (4.109); for example, with q 'I 0, N = atP, T = 0, and 
r = m = n = p = s = 0. Similarly, (4.23b) can be recovered with p 'I 0, 
N = aq, T = 0, and r = q = m = n = s = 0. There are other combinations 
of parameters that also recover these earlier results. 

A number of results for two-time averages of operators expressed as 
normal-ordered and antinormal-ordered series now follow from ( 4.108) and 
( 4.109). We introduce the normal-ordered series 

N1 = N1(a at)= atPaq ' - L....; lp,q ' (4.110a) 
p,q 

N2 = N2(a at)= ' -6 2pq ' (4.110b) 
p,q 

and the antinormal-ordered series 
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(4.1lla) 
p,q 

A2 = A2(a at) = """'c<a) aqatP 
' - 2pq . (4.1llb) 

p,q 

Then, applying (4.108) term by term, we prove the following (T 2 0): 

(Nl(t)N(t + T)N2(t)) 

= J d2a J d2a 0 N(a, a*)P(a, a*, Tiao, a(;, 0) 

X 1V{ao-
(4.112a) 

(Nl(t)N(t + T)A2(t)) 

= J d2 a J d2 a0 N(a, a*)P(a, a*, Tiao, a(;, 0) 

xN{ao-
0 (4.112b) 

(Al(t)N(t + T)N2(t)) 

= J d2a J d2a0 N(a, a*)P(a, a*, Tiao, a(;, 0) 

x ih( ao- a0) N2( ao, a0- P(a0 , a0, t), 
(4.112c) 

(Al (t)N(t + T)A2(t)) 

= J d2a J d2a 0 N(a, a*)P(a, a*, Tiao, a(;, 0) 

X Jh(ao- a(;)J!;(ao, a(;- P(ao, a0, t). 
0 (4.112d) 

The arrows indicate whether the power series are to be written with the 

differential operators placed to the right or to the left. Equation ( 4.109) 

allows the order of the functions N1, N2, A1, and A2 to be reversed in these 

expressions. 

Note 4.6 We have not exhausted all combinations of normal-ordered and 
antinormal-ordered operators here. If N is replaced by an antinormal-ordered 

series [Eq. (4.64)], it can be shown that N(a,a*) may be replaced in (4.112a)-

(4.112d) by either A( a- a*) or A( a, a*- ,t,J. The resulting expressions 

reproduce (4.23a) and (4.23b), respectively, when N1 = N2 = A1 = A2 = 1 
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and A= aqatP. To prove this, use the relationship between Fln)(a,a*) and 

Fla)(a,a*) given by (4.78). 

4.3.5 Two-Time Averages 
Using the Q and Wigner Representations 

Just as the operator averages corresponding to the moments of the single-
time distribution vary from one representation to the other, so too do the 
averages corresponding to the moments ofthe two-time, or joint, distribution. 
In the Q representation a calculation parallel to that of Sect. 4.3.3 shows 
that antinormal-ordered, reverse-time-ordered, two-time averages are given 
by (r 0) 

with 

and 

(aq(t)A(t + r)atP(t)) = ((a*Paq)(t)A(t + r))Q, (4.113a) 

((a*Paq)(t)A(t + r))Q 

= j d2a j d2a 0 a*)Q(a, a*, t + r; ao, t), 
(4.113b) 

Q(a, a*, t + r; ao, t) = Q(a, a*, rlao, O)Q(ao, t), (4.114) 

where A is any operator written as a series in antinormal order [Eq. (4.64)]. 
More general averages not of the antinormal-ordered, reverse-time-ordered 
form involve derivatives of the Q distribution after the fashion of (4.112a)-
(4.112d). 

Exercise 4.6 Show that (r 0) 

(A1(t)A(t + r)A2(t)) 

= J d2a J d2 a 0 A( a, a*)Q(a, a*, riao, 0) 

x A; ( ao, + A; ( ao + , Q( a 0 , t), 
(4.115a) 

(A1(t)A(t + r)N2(t)) 

= j d2 a j d2 ao A( a, a*)Q(a, a*, riao, 0) 

X + + 
0 (4.115b) 
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(NI(t)A(t + T)A2(t)) 

= J d2a J d2ao A( a, a*)Q(a, a*, Tlao, a0, 0) 

(4.115c) 
(Nl(t)A(t + T)N2(t)) 

= J d2a J d2a 0 A( a, a*)Q(a, a*, Tlao, a0, 0) 

x a0 + a0) Q(ao, a0, t). 
0 (4.115d) 

As mentioned in Note 4.6, if A is replaced by an operator N = N(a, at) writ-
ten as a normal-ordered series, A( a, a*) may be replaced in these expressions 

---+ ---+ 
by either N (a + a*) or N (a, a* + //c,). From the resulting expressions 
we can recover (4.24a) and (4.24b) by setting A1 = A2 = N1 = N2 = 1 and 
N(a,at) = atPaq. 

We might expect the operator averages that correspond to moments of the 
two-time distribution in the Wigner representation to be some rather tangled 
mess. The symmetric-ordered operators related to moments of the one-time 
distribution are themselves a little imposing beyond the first few orders; how 
must we distribute the "t's" and "t + T's" within the terms of the symmetric 
operator sums [Eqs. ( 4.29)] to come up with the two-time operator whose 
average is given by a double integration like (4.100) or (4.113)? The answer 
to this question is found by studying Sect. 4.3.3 a little more carefully to 
find out what really makes the calculation there work. Needless to say, the 
extension of this calculation to two-time averages calculated in the Wigner 
representation is going to call for a little more algebraic muscle. 

First, note that a sum of averages ( T ;:::=: 0) 

(4.116) 
i,j i,j 

can be written as a phase-space integral analogous to (4.96): 
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i,j 

= • (a a*) 
7r Ojp(t)O; ' S ' ' 

i,j ( 4.117) 

where we have used (4.84) and (4.94), and S denotes any operator written as a 
symmetric-ordered series [Eq. ( 4.81)]. Now, the point on which the calculation 
of Sect. 4.3.3 turns is found in the fourth line of the equation below ( 4.96); if 
we can substitute z*) for z*) here we will be able to proceed 
in a parallel calculation to a result analogous to (4.100) -with W replacing 
P, and S replacing N. But to connect such a calculation with ( 4.117) we must 
answer one question: What operators Oi and Oj must be chosen so that 

'""'p<s) ( *) - ap+q p<s) ( *)? 
6jp(t)6i z, z - a(iz*ta(iz)q p(t) z, z · 

<,) 

With the answer to this question the two-time operator average obtained 
from moments of the two-time distribution in the Wigner representation will 
be the average ( 4.116). 

The key to an answer lies with the following observation. Using (4.71) 
and the Baker-Hausdorff theorem [Eq. (4.8)], we find 

a -(s)( *) 
a(iz) Fp(t) z, z 

a [ .. t+. ] = --. -7rtr p(t)e"z a •za 
a(zz) 
a 1 [ ( 1 1 12 . . • t 1 1 12 .• t . )] = --. --7ltr p(t) e2 z e•zaeu a + e-2 z e•z a e•za 

a(zz) 2 

= [(a - t +iza + eiz*at +iza (a+ J} 

= z*) + z*)], (4.118a) 

and, in a similar fashion, 

a p<sl ( *) _ 1 [P<sl ( *) p<sl ( *)] a( iz*) p(t) z, z - 2 at p(t) z, z + p(t)at z, z . (4.118b) 

Also, if we wish to obtain an answer in a form that preserves the relation-
ship to operators written in symmetric order, we must order the differential 
operators appearing in (4.118) in a corresponding fashion. Thus, we write 

(4.119) 
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where the right-hand side is the average of the (p+q)!j(p!q!) orderings of the 
p differential operators 8/8(iz*) and the q differential operators 8j8(iz). Now 
the answer to our question is accessible. To reach it, however, still requires a 
little combinatorics. The final step is left as an exercise: 

Exercise 4.7 Use (4.118a), (4.118b), and (4.119) to show that 

()P+q p(s) * 1 (p + q) p(s) * 
8(iz*ta(iz)q p(t)(z,z) = 2v+q f='o k ), 

(4.120) 

with 

(4.121) 

where the summation in (4.121) is taken over all different permutations 
61 · · · 6p+q of p creation operators and q annihilation operators - i.e. p(t) 
is placed into each term of (atvaq)s k places from the extreme right. 

Equation (4.120) now allows us to follow the steps that led to (4.97) to 
obtain the corresponding result 

( 4.122) 

The series of operators 6i and 6 j appearing in ( 4.117) must now be chosen 
to connect with this result. The choice is fairly obvious from the associated 
function that appears on the left-hand side of (4.122); we have 

1 q) p!q! 
= 2P+q k (p + q)! 

k=O 

X L (6p+q(t) ... 6k+l(t)S(t + T)6k(t) ... 6l(t)) 
{Oj} 

1 q) p!q! 
= 2P+q k (p + q)! 

k=O 

X L tr{(e.CT[6k ... 6lp(t)6p+q ... 6k+ll)S}, 
{Oj} 
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where we have used (1.102). The order of the subscripts in the sum over 
permutations of the operator product atvaq can be changed with no effect, 
since operator sequences in every order are covered in the sum. Then 

1 q) p!q! 
= 2P+q L...J k (p + q)! 

k=O 

x L tr{(e.Cr[Op+q · · · Op+q-k+!P(t)Ov+q-k · · · 01l)S}. 
{Oj} 

In the operator sequences on the right-hand side of this expression p(t) is 
inserted k places from the extreme left, in contrast to its position k places 
from the extreme right in the definition (4.121). This difference is removed, 
however, by a change of summation index, with p + q- k---+ k; after making 
this change we arrive at the desired explicit form for (4.117); using (4.84) 
and (4.94): 

(4.123) 

Equations (4.122) and (4.123) allow the two-time operator average on 
the left-hand side of (4.123) to be calculated as a phase-space average with 
respect to the two-time Wigner distribution. Following the steps leading from 
(4.98) to (4.100) we obtain the corresponding result (r 0) 

with 

((a*Paq)(t)S(t + r))w 

= Jd2a 

(4.124b) 
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and 

W(a, a*, t + T; ao, a0, t) = W(a, a*, Tlao, a0, O)W(ao, a0, t). (4.125) 

We have again managed to construct a relationship between ordered oper-
ator two-time averages and two-time averages in the corresponding "classi-
cal" statistical system. However, the sum of operator averages appearing on 
the left-hand side of (4.124a) makes this a rather more formidable relation-
ship than the corresponding relationships for the P and Q representations 
[Eqs. (4.100) and (4.113)]. 

To convince ourselves of the consistency of our result we should perhaps 
show that ( 4.124) is able to reproduce the expression for calculating one-
time averages in the Wigner representation [Eq. (4.31)]. This is clear when 
we specialize to one-time averages by either taking p = q = 0, or S = 1; in 
both cases we need only observe that 

It is less obvious, however, that the single-time result is recovered when T is 
set to zero. Then (4.124) becomes 

= j d2 aa*PaqS(a, a*)W(a, a*, t). 

If this is to correspond to ( 4.31), the phase-space function 

a*PaqS(a,a*) = L 
p',q' 

that appears with the Wigner distribution in the integrand on the right-hand 
side must be the symmetric-ordered associated function for the operator that 
appears on the left-hand side- i.e. for the operator 

= "'ces) [-1- (p + q)(atP. (atp' aq')s ·aq)(k)l L.... p',q' 2P+q L.... k . . S . 
p',q' k=O 

We know that (a tv+v' aq+q') 8 is the operator with the symmetric-ordered 
associated function a*P+v' aq+q'; thus, we must show that 
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(4.126) 

The proof is constructed by using the identity ( 4.28) to write 

= p+q (atP:eiz*at+iza:aq)(k) . 
aP' +q' p+q ( ) I 

a(iz*)P' a(iz)q' 2P+q k S 
k=O z=z*=O 

Then, using 

_a_eiz*at+iza = l(aeiz*at+iza + eiz*at+izaa) 
a( iz) 2 ' 

(4.127a) 

__ a_eiz*at +iza = l (at eiz*at +iza + eiz*at +izaat) 
a(iz*) 2 ' 

(4.127b) 

a calculation parallel to the one leading from ( 4.118) to ( 4.120) gives 

Substituting this result and making a second use of ( 4.28), we have 

_1_ (p + q)(atP: (atP' aq')s :aq)(k) 
2P+q k S 

k=O 

- e"z a +tza 
f)P+P' +q+q' . * t . I 

- 0( iz* )P+P' a( iz )q+q' z=z* =O 

= (atP+P' aq+q')s· 

It is possible to derive more general expressions for two-time averages 
in the Wigner representation - expressions that involve partial derivatives, 
after the fashion of the results (4.112) and (4.115) for the P and Q repre-
sentations. We have no use, however, for these expressions later in the book 
and therefore we will not bother with their derivation here. In general we 
are interested only in the simple relationships (4.100), (4.113), and (4.124), 
where two-time operator averages are given by moments of the two-time 
phase-space distributions. It is important to realize, however, that within 
each of the three representations we have discussed many two-time averages 
simply cannot be calculated in terms of a simple "classical" integral; the 
more complicated expressions such as ( 4.112) and ( 4.115) are needed when 
the ordering is inappropriate for the chosen representation. When calculating 
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single-time averages we always have the option of reordering the operators 
to suit the representation. Thus, (ata) can be calculated as (ata) = (a*a)P 
in the P representation, (aat)- 1 = (a*a)q- 1 in the Q representation, or 

as H (at a)+ (aa t)) - ! = (a* a )w - ! in the Wigner representation. On the 
other hand, while an average like (at(t + r)a(t)) , or (a(t + r)a(t)), can be 
calculated as a "classical" integral in the P representation [Eq. (4.100)], we 
generally do not have commutation relations to tell us how to reorder the 
operators so that the same result can be obtained as simply in either the Q 
or the Wigner representations. Applications in quantum optics are ultimately 
concerned with the normal-ordered time-ordered averages that arise in the 
theory of photodetection [4.11, 4.12]. Our phase-space results for two-time 
(more generally multi-time) averages clearly distinguishes the P representa-
tion as the most suited to the treatment of problems in quantum optics -
results for multi-time averages show this even more clearly than do results 
for one-time averages. 

Note 4. 7 The assertion that the P representation is the most suited to 
problems in quantum optics perhaps requires some qualification. The P rep-
resentation gains its special status from the theory of photoelectric detection, 
in which normal-ordered time-ordered averages appear. Therefore questions 
that are related in an immediate way to the ultimate observation of pho-
tons through the photoelectric effect lead in a natural way to a phase-space 
formulation in terms of the P representation. But there are questions of in-
terest which need not be stated in terms of the photoelectric emission that 
ultimately completes a measurement process. Certainly then, there are situ-
ations in which, as a mathematical tool, the Q or the Wigner representation 
might be preferred over the P representation. An important consideration 
in this regard is the fact that the P distribution may be a generalized func-
tion. If this is so we do not gain much physical insight, and probably little 
mathematical assistance, by using the P representation. On the other hand, 
the Q and Wigner distributions are always well-behaved functions (although 
the Wigner distribution may take on negative values). For this reason the Q 
or Wigner representation is often the choice for studies of nonclassical states 
of the electromagnetic field - for example, squeezed states, in one sense, are 
related most directly to the Wigner representation. 

Having said this, it is still important to reiterate the observation above 
concerning multi-time averages. When we use a phase-space representation 
to convert an operator master equation into a Fokker-Planck equation, we 
do not merely set up a representation for some state of the electromagnetic 
field; we set up a correspondence between quantum and classical processes 
that evolve in time. When the P representation provides the basis for the 
quantum-classical correspondence a direct connection exists between all the 
multi-time correlation functions of the classical process and the multi-time 
correlation functions of the quantized field that are measured by photoelec-
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tric detection. We cannot make a similar general statement connecting the 
classical multi-time correlation functions and measured multi-time statistics 
of the quantized field when the Q or Wigner representations provide the basis 
for the quantum-classical correspondence. 

Exercise 4.8 Reproduce the result 

from Sect. 1.5.3 using the P representation and the Q representation. From 
the simple relationship between the Fokker-Planck equations for the damped 
harmonic oscillator, it follows that (4.113) and (4.124) give 

(a(O)a(T)at(T)at(o))ss = (n + 1)2(1 + e-'YT) 

and 

Reproduce these results using the methods of Sect. 1.5.3. 


