3. Q Classical Correspond
for the Electromagnetic Field I:
The Glauber—-Sudarshan P Representation

In Chap. 1 we developed a formalism to handle dissipative problems in quan-
tum mechanics. The central result of this formalism was the operator master
equation for the reduced density operator p of a dissipative system. This
equation can be written formally as

p=1Lp, (3.1)

where £ is a generalized Liouvillian, or “superoperator”, which acts, not on
the states, but on the operators of the system. In a specific application £ is
defined by an explicit expression in terms of various commutators involving
system operators. While it is generally not possible to solve the operator
master equation directly to find p(t) in operator form, we have seen that
alternative methods of analysis are available to us. We can derive equations
of motion for expectation values, and if these form a suitable closed set,
solve these equations for time-dependent operator averages. Alternatively,
we may choose a representation and take matrix elements of (3.1) to obtain
equations of motion for the matrix elements of p. We have also seen how
equations of motion for one-time operator averages can be used to obtain
equations of motion for two-time averages (correlation functions) using the
quantum regression formula.

We are now going to meet an entirely new approach to the problem
of solving the operator master equation and calculating operator averages
and correlation functions. For the present we will only consider the elec-
tromagnetic field —i.e. the harmonic oscillator. In Chap. 6 we will general-
ize the techniques learned here to collections of two-level atoms. This new

approach establishes a between q I opera-
tors and ordinary (classical) functions, such that quanities o interest in a
problem can be calculated using the methods of classical

stausnml physics. Under this correspondence the operator master equation
transforms into a partial differential equation for a quasidistribution function
which corresponds to (represents) p. For the damped harmonic oscillator this
quasidistribution function is a function of the classical phase-space variables
g and p, or alternatively, the complex variables o = (muwq + ip)/v2hmw
and a* = (mwq — ip)/V2hmw that correspond to the operators a and a!.
Operator averages, written in an appropriate order (e.g. normal order), are
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calculated by integrating functions of these classical variables against the
quasidistribution function, in the same manner in which we take classical
phase-space averages. This quantum-classical correspondence is particularly
appealing when the partial differential equation corresponding to the oper-
ator master equation is a Fokker-Planck equation. Fokker-Planck equations
are familiar from classical statistical physics, and in this context they have
been studied extensively [3.1]. When the operator master equation becomes
a Fokker-Planck equation, analogies can be drawn between classical fluc-
tuation phenomena and fluctuations generated by the quantum dynamics.
This helps us develop an intuition for the effects of quantum fluctuations.
Also, mathematical techniques that were developed for analyzing Fokker-
Plank equations in their traditional setting can be sequestered to help solve
a quantum-mechanical problem.

There are, in fact, many ways in which to set up a quantum-classical
correspondence. We will meet a number of these in this book and still more
in Volume 2. The original ideas go back to the work of Wigner [3.2]. Wigner,
however, was interested in general questions of quantum statistical mechanics,
not specifically in quantum-optical applications; wide use of the methods of
quantum-classical correspondence for problems in quantum optics only began
with the work of Glauber [3.3] and Sudarshan [3.4]. These authors indepen-
dently developed what is now commonly known as the Glauber-Sudarshan P
representation, o smply the P representation, for the electromagnetic fel.
The is based on a in which I-ordered op-
erator averages are calculated as classical phase-space averages; it has been
tailored for the special role played by normal-ordered averages in the theory of
photodetection and quantum coherence (3.3, 3.5, 3.6]. The Wigner represen-
tation gives the averages of operators written in Weyl, or symmetric, order;
other representations exist which use still different ordering conventions.

3.1 The Glauber-Sudarshan P Rep: .

The Glauber-Sudarshan P representation was introduced primarily for the
description of statistical mixtures of coherent states - the closest approach
within the q theory to ic field described
by the classical statistical theory of optics. An understanding of this represen-
tation can therefore be built on a few simple properties of the coherent states.
Formal definition of the P representation can, alternatively, be given without
any mention of the coherent states; this is the more useful approach when we
want to generalize the methods of quantum-classical correspondence to other
representations for the field, and to representations for collections of two-level
atoms. We will follow both routes in turn, to define the P representation and
then illustrate its use by deriving a Fokker-Planck equation for the damped
harmonic oscillator. We first follow the route based on coherent states, where
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we begin with a review of some of the more important properties of these
states. Further discussion of the coherent states can be found in Louisell [3.7]
and Sargent, Scully and Lamb [3.8).

3.1.1 Coherent States

The coherent state [a) is the right eigenstate of the anniilation operator @
with complex eigenvalue a:

alo) =ala), (ala' = (al))’ =a*(al. (32)

From this definition we may prove the following properties of the coherent
states:

Proposition 3.1 If a harmonic oscillator, with Hamiltonian H = hwa'a,
has as its initial state the coherent state |ao), then it remains in a coherent
state for all times with the oscillating complex amplitude a(t) = age™™* -
the time-dependent state of the oscillator is given by

/Mt ag) = ¢~ ag) = |~ ag) = [a(t).  (33)

1(2)

Proof. We show that |¥(t)) is the right cigenstate of a with eigenvalue a(t):
al (1)) = ae~**"*"|ao)
= givalat (glun'atgg-tua'at o)
= (e7*!a0) (™))
=),
where we have used (1.40a) and (3.2). o

Proposition 3.2 The coherent states are minimum uncertainty states: for
a mechanical oscillator with position and momentum operators § and p, re-

spectively,

A9dp = \((a - @) WG~ B)°) = in. (34)
where the averages are taken with respect to a coherent state.
Proof. From (1.12a) and (1.12b),

i= \/l(uaw, (350)

p= iy - ). (@:b)
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Then, for an oscillator in the state |a),
oD () (s
(@ - @) =@ -@?*
= gz (al(a? + aal +a'a+a')a) - (2)?

i [(al(aa’

ala)la) + (a+a’)] - (@)

=
= Z—~<aua alla)
h

=, (36a)

where we have used (3.2) and the commutation relation (1.10); we assume
that the state |a) is normalized. Similarly,

(-0 = anu (3.6b)

V- @) W(e- o)) =

Thus,

a

Proposition 3.3 A normalized coherent state can be expanded in terms of
the Fock states [n), n=0,1,2,..., as

la) = e~3laf® Z

(3.7)

Proof. We write .
la) =" caln)
=

and substitute this expansion into (3.2). Using aln) = v/in — 1), this gives
the relationship

Multiplying on the left by (m| and using the orthogonality of the Fock states,
we have

® -
> enVitbpn- =a Y cabmns
= k=1

or

CmpVm 1 = acpm;

thus,
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en = ——co.

Val
¢ is determined by the normalization condition (ala) =

(ala) = leol? 3° %

o
<, Valm!

2y~ lof
=leof? Yo 12

- |cu\2e|"|11
thus,
o= e dlel!,
where the arbitrary phase has been chosen so that co is real. o

Proj n 3.4 The coherent states are not orthogonal; the overlap of the
tater Ja} o 18) is given by

[(alB)[? = e7le=r". (38)

Note that |a) and |8) are approximately orthogonal when |a — 2 becomes
large.

Proof. Using (3.7)

I T
(alg) =€ € z;n o

ot (@)
— et g-h1ar z;)%

(nlm)

= e Hlal’g=41817 a8
Then .
[(alB)|? = e~loe-101

— ela-al,

Proposition 3.5 The coherent states are complete:
1
: /dfr. la)al =1, (39)

the integration being taken over the entire complex plane.
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Proof. From (3.7),

+[#alal

1/&”“‘“" w ‘/_|ﬂ)(m[

or, in polar coordinates,

I/d’am)(al 20 In)m|

2n
+m+./’ dgemitn-me,
nlm! o

where a = re'®. The integration over ¢ gives zero unless n is equal to m.
Thus,
1 oIl % e
;/d’ala)(ad = 2; ), dre~" AL
After integrating by parts n times,
1 ol
;/d’a |a){al = 2; 3 Z |n)(n]

The final step follows from the completeness of the Fock states. o

Proposition 3.6 The coherent states can n be generuted from the vacuum state
by the action of the creation operator

la) = c>!l°l’c°°'|o). (3.10)

Proof. Using a'|n) = v+ Tjn + 1), we have
e~4laleaa’jg) = e»gm’z %a‘"m)

- e»%l'-l’nzﬂ”;:\/yi\n)

Py @
¢ ||§‘/'T|,,)

‘This is the expression (3.7) for the Fock state expansion of the coherent state
a). [=]
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3.1.2 Diagonal Representation for the Density Operator
Using Coherent States

Using the completeness of the Fock states, a representation for the density

operator p in terms of these states is obtained by multiplying on the left and
right by the unit operator expressed as a sum of outer products:

(i Iﬂ)(nl)p(glm)(w)

n=0

N
I

= pamln)ml, (3.11)
o

with pnm = (n|p|m). The Fock states are orthogonal as well as being com-
plete, as is the common situation for a set of basis states. The coherent states
are not orthogonal (Proposition 3.4). However, they are complete (Proposi-
tion 3.5), and this is all we need to define a representation for p analogous to
(3.11). From (3.9), we may write

o= (3 f@atorel)o(t 010
- 2 [#a [EslaGiabin. (@12)

Glauber has defined what he calls the R representation, expanding the density
operator in the form [3.3]

pe ,:_z / Pa / 28(a) (8] e~HoF -1 Ra*, 6), (3.13)
where

R(a*,8) = et 1197 a] | )
_ ohlof 187 (- plar? g2 07" a2 o= 8™
= edlal 181 (e Hlal zﬁ‘"')"(‘ 3lar ,,gﬁlm))

=
= MZEO %pn.m. (3.14)

Clearly, this representation follows the familiar methods for specifying an
operator in terms of its matrix elements; the exponential factors appearing
in (3.13) merely simplify the relationship between the function R(a®, §) and
the Fock state matrix elements p . The P representation s rather different.

The Glauber-Sudarshan P representation relies on the fact that the co-
herent states are not orthogonal. In technical terms they then form an over-
complete basis, and, as a consequence, it is possible to expand p as a diagonal
sum over coherent states:
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o= / @ala)(alP(a). (3.15)

This representation for p is appealing because the function P(a) plays a role
rather analogous to that of a classical probability distribution. First, note
that

f PaPlo) = / &a (al)P(a)

=tr (/aﬂnla)(aw(a))

= tr(p)

=1, (3.16)
where we have inserted (aja) = 1 and used the cyclic property of the trace.
Thus, P(a) is normalized like a classical probability distribution. Note also
that for the expectation values of operators written in normal order (creation
operators to the left and annihilation operators to the right), on substituting
the expansion (3.15) for p,

(alPat

tr(pa'?at)
- "( ] o |a)(u|P(n)a"’u”)
= / &a P(a)(ala'?a%|)

= / a P(a)a

(3.17)

N¢ J-ordered s Iculated in the way that

calculated in classical statistics, with P(a) playing the role of the probability
distribution [(3.16) is a special case of this result with p = 0]. We will
introduce the notation

(@), = [#apl)aat, (3.18)
and write
(al"a%) = (&) . (3.19)

As mentioned earlier, obtaining normal-ordered averages in this way is par-
ticularly useful because measurements in quantum optics have a direct re-
lationship to such normal-ordered quantities, a consequence of the fact that
photoelectric detectors work by the absorption of photons.

The analogy between P(a) and a classical probability distribution over
coherent states must be made with reservation, however. In the Fock-state
representation pn.n = (n|pln) is an actual probability; it is the probability
that the oscillator will be found in the state |n) — the probability that the
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field mode will be found to contain n photons. But because of the orthogo-
nality of the Fock states, only a limited class of states can be represented by
the diagonal matrix elements p, , alone. There exist states whose complete
representation requires that at least some nonzero numbers pp . = {n|pjm),
n # m, be specified in addition to the probabilities p, .. The coherent states
are not orthogonal, and it is therefore possible to make a diagonal expansion
for p that is not restricted in the same way; the expansion (3.15) does not
antomatically require that the off-diagonal coherent state matrix elements
vanish. With the help of (3.8), from (3.15) we obtain

(alelB) = /d’A(n\*)(Xlﬂ)P(*)
:/d’/\e’i‘*’“"e’!“"’"P(A). (3.20)
There is no need for this to vanish when a # f. There is a price to pay

for this versatility, however. We must now accept that P(a) is not strictly a
probability. When a = 6, (3.20) gives

(alpla) = /m el py), (3.21)

Since e=*=°1" is not a 6-function, (alpla) # P(a). Only when P()) is suffi-
ciently broad compared to the Gaussian filter inside the integral in (3.21) does
it approximate a probability. Also, although the probability (alpla) must be
positive, (3.21) does not require P(a) to be so. Thus, unlike a classical prob-
ability, P(a) can take negative values over a limited range [although (3.16)
must still be satisfied). P(a) is not, therefore, a probability distribution, and
for this reason it is often referred to as a quasidistribution function. We will
simply use the word “distribution”. In fact, this is qui

tribution” is interpreted in the sense of generalized functions. We will see
shortly that P(a) is, most generally, a generalized function.

3.1.3 Examples: Coherent States, Thermal States, and Fock States
It is clear from (3.15) that the coherent state ag) — density operator p =
lao){ao| - is represented by the P distribution

P(a) = 8 (a ~ ao) = 8(z ~ z0)8(y - wo), (3.22)

where a = z-+iy and ap = 2o +iyo. Can we find a diagonal representation for
any density operator? To answer this question we must try to invert (3.15).
This is made possible using the relationship
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u(pe"'-‘e"“) = u{[ / d’aln)(a?P(n)] e“'“‘e"“}
= [apiayaie
= [ap@es

Equation (3.23) is just a two-dimensional Fourier transform. The inverse
transform gives

(3.23)

/d’zu(pe""'e'")e-"""e-"". (3:24)

Thus, if the Fourier transform of the function defined by the trace in (3.24)
exists for a given density operator p, we have our P distribution representing
that density operator. A general expression for P(a) in terms of the Fock-
state representation of  follows by substituting (3.11) into (3.24) and using
the cyclic property of the trace:

Play= /&( i pm(mle.z-,-c.,.l,,))e,.,-,.-e,.,,.
t
”12/ (Z 2 - (ml(ua) [ua) In))

=0 =

X e-iza" gmiza

‘/a* (Ersfant

0 n'=0 m=0m'=0

Noting that

and changmg the summation indices, with n’ — n, m’ — m, and n — n’
— k, we find

—0m=0k=0

-4 /&(zzzwwmm

':—))e-"""e-"“. (3.25)
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Exercise 3.1 Substitute p = |ao)(ao| into (3.24) and the Fock-state rep-
resentation for this density operator into (3.25); show that both of these
equations reproduce the P distribution (3.22) for the coherent state. For the
thermal state

p = (1 — e~he/knT)o=ua'a/knT (3.26)

show that (3.25) gives

P(a)

/,p”—lxl’mru-a-f.m
=L (-l
- se=(-55) @0

(@) = (ala)

where

(3.28)

Now, consider the P distribution representing a Fock state. We will take
p = [1){1] where I can be any non-negative integer. From (3.25),

Plo)= _/f(zl)mzl’zﬁam,i‘,n—’m%)

1 SO U\ e i g
F/az?z(l;T’m ¢ e (3.29)

where we have changed the summation index, with | — k — k. Since the
summation in (3.29) does not extend to infinity, the expression inside the
bracket is a polynomial, and it clearly diverges for |z| — oo. Thus, this
Fourier transform does not exist in the ordinary sense; it would appear that
we cannot represent a Fock state using only a diagonal expansion in coherent
states. If, however, we write

53 (ar

e (330)

and use the ordinary rules of differentiation inside the integral in (3.29), we
may evaluate the integral in terms of derivatives of the é-function. This gives
the P distribution

Lo *
P(nl:‘g T )!ﬁafwm"“)' (331)
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Note 3.1 We will have many occasions to take derivatives with respect to

complex conjugate variables. It is convenient to do this by reading the com-
plex variable and its conjugate as two independent variables. This is allowed

because
HCRCER R

and, of course,

- (ia
30"~ o

a 0,

(3.32a)

B

(3.32b)

The mathematical theory that gives precise meaning to (3.31) is the
theory of generalized functions (3.9-3.11] or distributions (in the technical
sense of “Schwartz distributions” and “tempered distributions” [3.12, 3.13]).
Within this theory the Fourier transform can be formally generalized to cover

Such Fourier transf: not
functions in v.he i sense; (3.31) does not tell us how to associate a number,
P(a), with each value of the variable a. There is certainly no way, then, to
interpret P(a) as a probability distribution. It is, however, a “distribution”
in the sense defined by the theory of generalized functions. There is no need
for us to get deeply involved with the formal theory of generalized functions.
Those interested can study this in the books by Lighthill [3.11] and Bremer-
mann [3.13]. Nevertheless, in order to appreciate the sense in which (3.31)
provides a diagonal representation for the Fock states we should spend just
a little time refreshing our memories about some of the basic properties of
generalized functions.

Generalized functions “live” inside integrals. There, they are integrated
against some ordinary function from a space of test functions. The value of
the integral for a given test function is defined as the limit of a sequence
of integrals obtained by replacing the generalized function by a sequence of
ordinary well-behaved functions. The generalized function is then, in this
sense, the limit of a sequence of ordinary functions. Of course, the sequence
of functions defining a given generalized function is not unique. For example,
for a suitable class of test functions, the 5-function acts inside an integral as
the limit of a sequence of Gaussians:

é(z) (3.33)

where the strict sense of this statement is
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n [
Here, the test function ¢(z) must be continuous and grow more slowly at
infinity than Ce?/#l, with C and a constants. A sequence of functions that
decrease faster than Gaussians at infinity would allow us to define the 4-
function on a larger space of test functions; most generally, for all continuous
functions. Thus, in formal language, generalized functions operate as func-
tionals; they associate a number (the limiting value of a sequence of ordinary
integrals) with each function from a space of test functions.

The derivative of a generalized function is also a generalized function,
defined via the rules of partial integration. Taking 6(x) = /(z) in (3.34), we
can write

[ wsowe

= 3(z) = 6(0). (3.34)

JRZEE

= lim

= lim [‘/— -na w(z)[ ( an‘/ge "*’)w(::)]
_wdr(—hx\/— e )w(z). (3.35)

Then, if §/(x) is the generalized function defined by the sequence of functions
obtained as the derivative of the sequence defining 8(z) - the functions inside
the bracket in (3.35) ~ the formula for partial integration is preserved:

- -
/ dz 8 (@)(x) = / dz8(@)¥/(z) = ~v/(0). (3.36)

More generally, for the nth derivative of the &-function, 8 (), we have
/ dz 8™ (2)y(x) = (—1)"/ dz8(x)p™ (z) = (~1)"6(0),  (337)
. 0

where 4(")(z) s the nth derivative of ¥(z). (Do not confuse the notation
for the nth derivative of the 6-function with the notation 8?(a) for the
two-dimensional 8-function.]

t us now use (3.37) to see explicitly how (3.31) provides a diagonal
representation for the Fock states. We will consider the one-photon state, the
simplest example; the general case can be done as an exercise. For [ = 1,
from (3.31),

P(a) = 6@(a) +

@
Fagat @ ).

Substituting into the diagonal expansion (3.15), and using (3.37) (twice for
the two-dimensional 8-function),
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- [#akiair@

= [#ajo [6‘2’ @+ a‘”(a)]

aaaa‘

=100+ [ (5opezlo)al) s
— "‘""'Lo‘ @38)

=100+ 5
From this we must recover p = |1)(1]. Using (3.10), we note that

%\a)(al = % (e e" o) 01e"")

(a' - a")la)(al. (3.39a)
_ ai- (z—|n\’cnn‘|0)(nlen'a)
= la)(al(a - a). (3.30b)

Then (3.38) readily gives the required result:

>
1]

il
— 001+ 2 lolella—
001+ 55 lo)elta -]
=10)(0] + [(a' — a*)|a)(al(a - a) — Ia)(alll -
= 1001+ (@'10/0la - 0)0)
=l
Exercise 3.2 Equation (3.31) is not always the most convenient form to use

in calculations. Show that P(a) for the Fock state |I) takes the alternate
forms

P
i Ba‘@a"ém(a)’ (3.40)
and in polar coordinates, with a = re'?,
1 o
PO) = 5 ™) (3.41)

Show that both of these expressions give p = [1) (I] when substituted into the
diagonal expansion for p [Eq. (3.15)].

Applications of the P representation in quantum optics have largely been
restricted to situations in which P(a) exists as an ordinary function, as it
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does, for example, for a thermal state [Eq. (3.27)]. With the use of generalized
functions it is actually possible to give any density operator a diagonal repre-
sentation [3.14, 3.15]. As we slnled earlier, however, our main objective when
s to cast the quantum-
‘mechanical theory into a l'onn closely analogous to a classical statistical the-
ory. P(a) is never strictly a probability for observing the coherent state |a),
but it can take the form of a probability distribution, and when it does,
this can be used to aid our intuition - as an example, the phase-independent
distribution given by (3.27) essentially corresponds to the classical picture
of a field mode subject to thermal fluctuations. Our intuition finds little as-
sistance from a representation in terms of a generalized function. The value
of preserving the analogy with a classical statistical system will be further
underlined as we now use the P representation to describe the dynamics of
the damped harmonic oscillator.

3.1.4 Fokker-Planck Equation
for the Damped Harmonic Oscillator

In Sect. 1.4.1 we derived the master equation for the damped harmonic os-
cillator:

tap — pa'a)

~iwola'a,p] + %(Zapa'
+7i(apa’ +a'pa —a'ap - paa'). (3.42)
Our goal in this section is to substitute the diagonal representation (3.15) for
. and convert the operator master equnuon into an equation al motion for P.
Obviously, we must assume the dep

P(a, ), to represent p at each instant ¢.
After substituting for p, (3.42) becomes

/hm)(.ﬂ%mn.z)
= [ Pla,0)] - isn(atala)al - o) ala'a)
+ %(2alrx)((xla'
+7i(ala) (ala’ + a'la)(ala - a'ala)(a] - |a)(alaa’)]. (3.43)

alala)(al - [a)(ala'a)

The central step in our derivation is to replace the action of the operators
a and a' on |a){a| (both to the right and to the left) by multiplication by
the complex variables a and a*, and the action of partial derivatives with
respect to these variables. This can be accomplished using (3.2) and (3.39):
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ala)(ala’ = ala){ala® = |al|a)(al, (3.44a)
et n‘) la)(al,  (3.44b)

a'ala)(a] = a'aja)(a] = aa'|)(a] = o
|a)(alata = la)(ala’a = a’|a)(ala = o (% + n)\a)(n|, (3.44c)
|o)(alaa’ = (a_- +a)|a)(a|a' = (— + a)a |a){al, (3.44d)
dla)ala = (1 +a Yoblota = (55 + o) (o + )l

Using these results in (3.43), after some cancelation, we find

(3.44¢)

]d’a |a)(a|%P(a,l) - /d’:, P(a.i)[— 3+ w‘,)a%

(5 ) + M e
(3.45)
It is a short step to an equation of motion for P. The partial derivatives which
now act to the right on |a)(a| can be transferred to the distribution P(a, ¢) by
integrating by parts. We will assume that P(a, t) vanishes sufficiently rapidly
at infinity to allow us to drop the boundary terms. Then (3.45) becomes

/d’a Ia)(GI%f’(n,t) = /d’n \a)(nl[(% + iur,) %o

TN D L P
+(F - iwo) geza” + MMganes P(u,t)-(“s)

Note 3.2 When integrating by parts o and a* may be read as independent
variables, as in differentiation (Note 3.1). Explicitly, for given functions f(a)
and g(a) (whose product vanishes at infinity),
9
[d“n J(@)z59(@)

[ e [ sty (3 - i) ot

=3 wfretea] - [ st Zsen)

I dvgte) 1)

-igf” dz[/(z,m(x W)
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T [T wwgent (L - i) s
[ [ vteony (513

== [£agta)am e,

Similarly,

[as@)zmste) = - [Eagia)znsa).

A sufficient condition for (3.46) to be satisfied is that the P distribution
obeys the equation of motion
aP 1
G =[Gz
We have replaced the operator equation (3.42) by a partial differential cqua-
tion for P. This is the Fokker-Planck cquation for the damped harmonic
oscillator in the P representation.

9
»wn)ﬁa w,nam’a P, (347)

Exercise 3.3 The question arises as to whether (3.47) is a necessary con-
dition for (3.46) to be satisfied. Multiply both sides of (3.46) on the left by
€"0" ¢ and take the trace to show that the necessary condition is that the
Fourier transforms of both sides of (3.47) are equal.

3.1.5 Solution of the Fokker-Planck Equation

We wil discuss the properties of Fokker-Planck equations in detail in Chap. 5.
For the present let us simply illustrate how (3.47) describes the damped har-
monic oscillator. We will solve this equation for an initial coherent state [ao).
Thus, we seck the Green function P(a, a% t|ao.3,0), with initial condition

P(a,a",0la0,a3,0) = §®)(a - ag) = 8(z — z)6(y - yo)- (3.48)

From now on we display P with two complex conjugate arguments consistent
with the interpretation of derivatives and integrals explained below (3.31)
and (3.46).

It is convenient to transform to a frame rotating at the frequency wy, with

“ia, et = et (3.49)

and .
Pla,a’,t) = P(a.a"1). (3.50)
We have
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Wn(aaa—ﬁa)i’ (3.51)
After substituting for 9P/dt from (3.47),
P _[v -
= E( (3.52)
or, in terms of the real and imaginary parts of @,
P _[y(d (8 &
R DRt @59

where & = & + i. Solutions can now be sought using separation of variables.
We write

P(&.3,1) = X@& DY (@), (3:54)
where the functions X and Y satisfy the independent equations

X (10, on o 55

= ‘(5&” )% (3.55a)

(10, 7 ﬁ) ;

o (21)y"+ To7 Y. (3.55b)

These are to be solved for X (£, t|0,0) and ¥ (7, t|jo. 0), subject to the initial
conditions
X(&,0z0,0) = 8(% — Zo), (3.568)
Y/(@ 010, 0) = 8(5 — Go)- (3.56b)
Consider (3.55). Its solution is found by taking the Fourier transform on
both sides of the equation. We find

‘;—l{ = (3.57)
where -
Ui, t]#0,0) = /: ee.ﬂ:x(i,ni,,.u)c-i"‘, (3.58)
and, from (3.56a), the initial condition for U is
U(, 0]0,0) = 0%, (3.59)
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We then solve (3.57) by the method of characteristics (3.16]. The subsidiary
equations are
dt_di au

TG/~ G o0
with solutions
e~/ = constant,, (3.61a)
Ve = constant.. (361b)
Thus, U must have the general form
Uiy tho,0) = ¢(e™ /D)= (/03 (3.62)

where ¢ is an arbitrary function. Choosing ¢ to match the ial condition

(3.59),
Ui, t|,0) = exp[izoie™ /D" |exp[ — (/4)i?(1 — e™™)]. (3.63)
Taking the inverse Fourier transform, we have
X(#,t]70,0)
- l/”dat/(a.uiu,o)e-'“
)

1[* .
- E/_wriu exp[ i

x exp[—(/4)i?(1 - e~ )]

Foe=0/Y)]

= i/w dit cos[i(z — Zoe™V/D')exp[ — (n/4)i2(1 - )]
2 ) -
a5 a2\
- [_ (& — e v(w/z):) ] 09

Equation (3.55b) can be solved in a similar fashion, whence,

P&, tho, 50,0)

& — doe= (D) 4 (5 — joe=/2t)?
B S I e e (Y Vo
(1 - e ) a(l—e)
(3.65)
or, equivalently,
o 1 i = Goe=(/2]
P(é, 6", tlao, i3,0) = m4.~xp[ = S

Then the P distribution for a damped coherent state is given by
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| — age=O/te=isnt |

. o 1
Playattiao a3, 0) = Zor—=sry ext { A=)

(3.67)

Pla,a*, t|ag, a3,0) is a two-dimensional Gaussian distribution. Thus, for
this example the P distribution has all the properties of a probability dis-
tribution. The mean of the Gaussian gives the oscillating and decaying os-
cillator amplitude calculated previously directly from the master equation
[Eq. (1.78)):

(a(t)) = (a(t)), = age™/Dtemi0t, (3.68)

The phase-independent variance describes the thermal fluctuations added to
the coherent amplitude by the oscillators interaction with the reservoir:

((a'a)(1)) = (a' ®)(a(t) = ((@*@)D),, - (a*(1) p ()
= [@@),+ D)) - @5+ G0)3]
=a(l-e™). (3.69)

For an initial coherent state, (a'(t))(a(t)) = |ao[2e~"* = {(a'a)(0))e~*, and
therefore (3.69) also agrees with our previous calculation [Eq. (1.80)]. In the
long-time limit the coherent amplitude decays to zero and the variance of
the fluctuations in each quadrature of the complex amplitude grows to #/2.
A comparison of (3.67) with (3.27) shows that the oscillator reaches a ther-
mal state with mean photon number 7 equal to the mean photon number
for a reservoir oscillator of frequency wo. Figure 3.1 illustrates these dynam-
ics with P(a,a",t|ag, a8, 0) represented by a single circular contour of ra-
dius 2)(1 For a Gaussian, the mean and variance determine all
higher-order moments. Hence, (3.68) and (3.69) determine all of the normal-
ordered operator averages for the damped oscillator [Eq. (3.19)). Using the
P representation we have put the statistical properties of the quantum-
mechanical oscillator into a correspondence with a classical statistical de-
scription in terms of the phase-space variables = and y. (For a mechanical
oscillator the coordinate and momentum variables are ¢ = &/2h/mw and
p = yv/2hma, respectively.)

3.2 The Characteristic Function
for Normal-Ordered Averages

We now look at an altemative way of defining the P representation and
deriving an equation of motion for the P distribution. This second approach
leaves the relationship to coherent states somewhat hidden, but introduces a
method that can readily be generalized — to define representations based on
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a

ig. 3.1 Time evolution of P(a, a", | ag, a3, 0)
[E.q (3.67)). The center of the Gaussian distri-
bution follows the spiral curve while the width
of the distribution increases with time, as il-
lustrated by the filled circular contours c:(0) =

0 aoe= (/D gmiwot 4 o [T T =),

different operator orderings, and to define representations for collections of
two-level atoms.

We have recently met two relationships that might suggest the new ap-
proach to us. In (3.23) and (3.24), and in Exercise 3.3, we saw that the
Fourier transform of P(a, a*) played an important role. Why not begin from
the function appearing on the left-hand side of (3.23) and define P(a,a”) to
be its Fourier transform. Indeed, this approach is suggested on the following,
more general grounds.

3.2.1 Operator Averages and the Characteristic Function
The function

Xa(212%) = trpet ' eixe) (370)
appearing on the left-hand side of (3.23) is a characteristic function in the

usual sense of statistical physics [3.17); it determines all normal-ordered op-
erator averages via the prescription

(a'?a%) = tr(pa'?a?)

faad .
= A ) (3.71)

The definition of a distribution for calculating normal-ordered averages fol-
lows quite naturally from this result. If we define P(a,a*) to be the two-
dimensional Fourier transform of y y(z,2*):

1

P(a,a®) j(F: Xy(z,27)eTE iz

= %/_‘II,L[JVXN(N +iv,p— iv)e” 2w (3.79)

with the inverse relationship
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Xyla2t) = /d’*ap(a,a')e"'“'e"“
o e
- / dx / dy Pla + iy, x — g0, (3.73)

then, from (3.71) and (3.73),

(a'?at) = 8(11_)"6('1)'/42“”“ at)ete gl .
= (@), (3.74a)
with
(@7ar), / &a P(a,a’)a"at, (3.74b)

Equation (3.73) is the same as (3.23), and (3.74) reproduces (3.19); the
P(a,a") defined in this way is the distribution introduced in (3.15) to give a
diagonal expansion in terms of coherent states. Let us see how the Fokker
Planck equation for the damped harmonic oscillator can be derived by start-
ing from this new definition of P(a,a").

3.2.2 Derivation of the Fokker-Planck Equation
Using the Characteristic Function

We will derive an equation of motion for the characteristic function and then
use the relationship between x(z, 2*,¢) and P(a,a,t) to convert this into
an equation of motion for P(a,a”,t).
From the definition of X .,
2 . -
% _ _"(M.: ol 0 — tr(pets"e! oi5). (375)

Then, the master equation (3.42) gives
Xn. —iwo(atap — pata) + L t — atap — pat
ot —tv{[ iwg(a'ap — pa'a) + 2(241»0 a'ap — pa'a)

+yi(apa’ +a'pa — alap — paa')]c"'“'e"‘}. (3.76)
Our aim is to express each of the nine terms on the right-hand side of (3.76)
in terms of X, and its derivatives with respect to (i2*) and (iz). For two of
the nine terms this can be achieved directly; we may write

"("'W o a', un) - "(W' iz"a! c""n)

= % )a(.z) Xy @)
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where we have simply used the cyclic property of the trace. The remaining
seven terms require a little more algebraic manipulation; but the goal is
always the same - to rearrange the terms inside the trace so that a' is to
the left of ¢'"¢" and a is to the right of €*. Then, a' and a can be brought
down from the exponentials by differentiation with respect to (iz*) and (iz),
respectively. Generally, the rearrangement may require us to pass a' through
the exponential ¢**, or a through the exponential '*"*'. For this purpose
we use

eagtemia = of 4 i, (3.78a)
emisal g gita _ g 4 izt (3.78b)

ae'

Equation (3.78a) follows by writing a(iz) = ¢*%a'e="%, with a}(0) = a';

then differentiate with respect to (iz):

i) = %% (aal — ala)e—i
d(u)a (iz) = ¢**(aa’ — a'a)e
Thus,

al(iz) =a'(0) +iz = af +iz.

Equation (3.78b) is obtained as the Hermitian conjugate of (3.78a) and the
replacement 2* — —z".

Now, using (3.78) and the cyclic property of the trace, the remaining
terms in (3.76) are:

tr(alapes o' e0) iz"al giza,

r (e ala)

— e ety o)

= tefplat + iz gireq)]
(8(-: 5 +1z)u‘(pe" ol ivaq)

N d
= (o * )tz o @)

tr(pataei®’®'ei®e) = tr[pates" ! (e=ix"a! geie'e')eiva]

= trfpate ' e a 1 is7))

(ﬂ(xZ) +iz )"(pﬂ' ol giza)

SRR
=(W iz )W""" (3.80)
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tr(paale’ ' ¢2) = trp(ala + 1)t e0]
= [(% + iz') % + l] Xyo (3.81)
which follows from (3.80); the last term is left as an exercise:
Exercise 3.4 Show that
iz*a' e‘”‘)

tr(a’ pae’

—(1-pap i
_(1 |2 +xza(',z)+lz

. a &
i * o) 09

After substituting (3.77) and (3.79)-(3.82) into (3.76) the equation of
motion for x y(z,2",1) is given by

Oxy L a v
Ba - [-Grim)-G
To pass to an equation of motion for P(a,a*,t) we use the Fourier transform

relation (3.73) and exchange the differential operator in the variables z and
z* for one in the variables a and a*:

/fﬂ dP(a,a",

)
u.;,.)z'g —~,ﬁu'] Xy (383)

s e

- /yizaP(u‘a',t) [—(% + wo):%
_ ,"—"z-]eu'a‘cua

- /d*a Pla,a’,t) [—(% + M)(io)% - (% - iwa)(ilx')%

(3.84)

Mg)z'%

“’"a(m)a(m )] i

The action of the derivatives on the right-hand side of (3.84) can be moved
from the product of exponentials, ¢*"* ¢***, to P(a, a",t) by integrating by
parts; we took the same step in passing from (3.45) to (3.46). Once again we
assume that P(a, a* t) vanishes sufficiently fast at infinity to justify dropping
the boundary terms. Then, (3.84) becomes

Jéwesnty = foases o[ i)

v a . &>
+(3 —iwo) gz ”f'W]P‘ (3.85)



3.2 The Characteristic Function for Normal-Ordered Averages 99

This is the Fourier transform of the Fokker-Planck equation derived in
Scct. 3.1.4. It is precisely the equation derived from (3.46) in Exercise 3.3.
Thus, after inverting the Fourier transform we arrive once again at the
Fokker-Planck equation (3.47).

4. Q Classical Correspond
for the Electromagnetic Field II:
P, Q, and Wigner Representations

The definition of the P representation as the Fourier transform of the normal-
ordered characteristic function can be generalized by simply taking different
characteristic functions - characteristic functions that give operator averages
in other than normal order. Here we will look at two new representations: the
Q representation, which is defined in terms of the characteristic function that
gives operator averages in antinormal order, and the Wigner representation,
defined in terms of the characteristic function that gives operator averages
in symmetric, or Weyl, order. This is not a comprehensive list. Cahill and
Glauber [4.1), and Agarwal and Wolf [4.2] have introduced formalisms in
which whole classes of different representations are defined. In particular,
Agarwal and Wolf take the possibilities to their ultimate extreme and de-
velop a very general and elegant formalism which they call the phase-space
caleulus. These general formalisms are not of much interest, however, when
it comes to applications. The P, Q, and Wigner representations are the only
examples that have traditionally scen any use in quantum optics. They are
special cases within the classes defined by Cahill and Glauber, and Agarwal
and Wolf. In Volume 2 we will meet one recent addition to the list which has
been used quite extnsiely | pmmnmy in the treatment of squeezing and
related nonclassical effects. e positive P representation introduced
by Drummond and Gardiner [4.3] A the name suggests, the positive P rep-
resentation is closely related to the Glauber-Sudarshan P representation.
We postpone its discussion, however, until we have acquired the background
needed to appreciate its special purpose and application. Certain properties
of the positive P representation are still only partly understood; this repre-
sentation therefore belongs with the modern research topics that are taken
up in Volume 2.

For additional reading on the Q and Wigner representations reference
may be made to Louisell [4.4] and Haken [4.5]. Also, Hillery et al. provide a
comprehensive review with numerous references [4.6].
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4.1 The Q and Wigner Representations
4.1.1 Antinormal-Ordered Averages and the Q Representation

If we wish to calculate antinormal-ordered averages, the rather obvious gen-
eralization from (3.70) is to define the characteristic function

Xp(2.2) = tr(pete ). (4.1)
Then in place of (3.71), antinormal-ondered operator averages are given by
(%) = tr(pata'?)

faad .
= sy (42)

If we define the distribution Q(a,a*) as the Fourier transform of X ,(z,2"):
Qlava’) = %/d’zXA(z.z')c"""'e""'
Ve e
= —1/ du/ dux \(p+iv,p = iw)e 20T (4.3)
L ey —o0
with the inverse relationship
xue2) = [EaQ(aae

o oo
= / d.z/ dy Q(x + iy, x — iy)e =Y, (4.4)
oo oo

corresponding to (3.74), we now have

/d’a Q(a,a*)e "¢’

s
(") = gizyom
= (@@

SR
Do (4.50)
with

(aPar), = / PaQ(a,a")a"al. (4.5b)

The Q distribution, so defined, has a very simple relationship to the co-
herent states. Consider (4.3) with x ,(z,2*) substituted explicitly from (4.1)
and the unit operator judiciously introduced in the form (3.9). We find

/d’zu[pe"“(%/di/\ |,\)(A|)e'*'“']("'"'z-'"'
/dﬂz/.m(A|e“'"'pe'“u)r“'“'e-'m

1 1 i2° (A" ~a) giz(A-a)
=;/au(x|p|x)[?[d‘u A7 —a%)gix(. ]
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= L0 -a)

Halpla). )

Thus, 7Q(a,a") is the diagonal matrix element of the density operator taken
with respect to the coherent state [a). It is therefore strictly a probability
the probability for observing the coherent state [a). This immediately gives
us the relationship between Q and P.

From (3.21) and (4.6),

Q(a,a*) = %/mc-“wl’)’(x,x). (a.7)

Note 4.1 It can be shown that the diagonal matrix elements (alp|a) specify
the density operator completely. Then the convolution (4.7) forms the basis
of formal proofs that every density operator may be given a diagonal repre-
sentation if P is allowed to be a generalized function. See [4.7) and [4.8] for
the details.

Another useful result is the relationship between the characteristic func-
tions X ,(z,2") and X (z,2*). We will make use of this shortly to derive the
FokkerPlanck equation for the damped harmonic oscillator in the @ repre-
sentation. The relationship follows from a special case of the Baker-Hausdorff
theorem [4.9]: If Oy and O, are two noncommuting operators that both com-
mute with their commutator, then

(0140

16036-4(01.03] _ 02401 04(0:.0u] “8)

Since the commutator of a and a' is a constant, this result can clearly be
applied to the exponentials in the definitions of X y(z,2*) and x,,(z,2"). It
follows from (3.70) and (4.1) that
Xy(2,27) = tr(pet=eet™e)
= tr(petsatiz'a’)e- 4l

isa)glel®

= tr(pet e

P xp(z ). (4.9)

Exercise 4.1 Use (4.9) to derive (4.7) directly from the definitions of the Q
and P distributions [Eqs. (4.3) and (3.72)]. Also, use both (3.40) and (3.41)
to show that (4.7) gives the correct Q distribution for the Fock state [1) -
namely;
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. 1
Qlava’) = ~l(al)*

M
o
el

1
= (4.10)

1 alternative relationship between the Q and P distributions follows
from (.9). Using (4.3) and (4.9),

-
/&e-""x,,(z.z‘)e"*'a'e-'m,

1

Q(a;a”)

Then, writing X (z,*) as the Fourier transform of P(A, A"), we have
Qlaa®)
= [ [ e i
U [ [ o fexp (2 )eers | gmivorgoise
3]0 . P\aaar

1 > ] i3 —an) izr-a
e

where the last line follows after integrating by parts. The integral with respect
to z gives a §-function and we find

Q(a.o‘):cxp(a‘ia_)P(a,a'). (4.11)

Note 4.2 If (4.11) is to hold for the coherent state |ao), (4.7) and (3.22)
require that we prove the rather unlikely looking result

OXP(B% )’5( (o —a0) = —E"”""’"

In spite of its unlikely appearance, this result follows from the limit defining
the -function [Eq. (3.33)] and

B \B ool
P\ Gada ) 7

Equation (4.12) can be proved using the identity (4.46):

» —n\n\’/(l-ﬂl]_ 4.12
THn® (@12)
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ol

nlalg~ (mla)® 1
L5y "‘;!
=1

[ gnlal?/(14n)

enlal?/(14n)
n

4.1.2 The Damped Harmonic Oscillator in the Q Representation
A Fokker-Planck equation for the damped harmonic oscillator can be derived
in the Q representation by following the same steps as in Sect. 3.2.2. A
convenient shortcut is available, however; we can use the relationship (4.9)
between x,(2,2) and x,,(z,2") and the equation of motion (3.83) for x y to
quickly artive at the equation of motion for x ,:

M _ 1o O
ot o
122 .9 _
=c\|[ (;’+w.,) 3 wo)z(;—wnu]x,,

[ Gris)s(3 +) -G ) (g )

- vﬁzz']c""'xN

[ (2 i) s 2 < (2 i) o .

‘[ (5 +i0)e; - (3~ n) 5 7"‘“’"]"4
(4.13)

This is the same as the equation of motion for ., except for the replacement

it — fi+1. We can therefore write down the corresponding equation of motion
for Q directly from (3.47):

Q _[rr, . v

o [(2'“‘"")&,‘”( )aa-" *'""‘“)aaaa Q- (@
This is the Fokker-Planck equation for the damped harmonic oscillator in the
Q representation.

We exploit the relationship between the Fokker-Planck equations in
the P and Q representations further to solve (4.14). The Green function
Q(a,a%,t]ag, a3, 0), which has initial condition

Q(a.a",0lag.a3,0) = 6?(a — ag

follows directly from (3.67) in the form

8(x = 20)8(y — yo). (4.15)
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Q(a;a’,t|ag, a3, 0)

[l — age=(r/2)te—iont2
TrmA - P A+ (- et ]

¢ ) i B ) (116)
It is important to realize that while the Green function in the P rep-
resentation describes an oscillator that is initially in a coherent state
P(a,a%tlag,a§,0) = P(a,a’,t)y0)=lag)(a| ~ the Green function in the Q
representation does not describe w Mll]ulor initially in a coherent sate; a
é-function in the Q herent state. In-
deed, (4.6) tells us that the Q dlsl.nhuuon for an mmal state p(0) = |ao){ao|
is

Q(0,0",0)y01asact = ~(al(la0)(@0)0)

1
= i(alao)?
= %e“"”""", (417)

where we have used (3.8). The time evolution of the Q distribution for this
initial state is then calculated using

Q(@, 0", )p(0)=lao) (ol
:/fAQ(a,cl',t|A‘)\.vO)Q[)‘-)\.vo)p(ﬂhlnn)(ﬂnl' (4.18)

Sumnmmg (4.16) and (4 17) into (4.18), and making the change of variable
~(1/2)te=iwot _, '\ we have

Q@0 0ol
_ 1 [ o= Ae-O/3teiuntj2
e e e I}

x {% exp[ A~ anF]}
o - AR

R e e Rl
x {e%' exp[-IA - ane-“/’“e-w'Fe"]}. (119)

This integral is a two-dimensional convolution; therefore, the Fourier trans-
form of the left-hand side is given by the product of the Fourier transforms
of the bracketed terms in the integrand; of course, the Fourier transform of
the left-hand side is the istic function x 4(2,2°,t), Thus,
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Xal#: 2" Dp(0)=fac) ol = xp[=[2*(2 + 1)(1 — €7™)]
xfespl-lafe ]t im0}, (1.20)

with ag(t) = age~(7/Pte=i0t The inverse transform gives the Q distribution
for a damped coherent state:

Q(a,a",8)p(0)=lao) (sl
— age-(/Dtg-isot2
- ! i o PP
Al +al—et)] | T+a(l—e)
Compared with the solution for the P distribution [Eq. (3.67)], the
solution (4.21) for the Q distribution shows one simple difference - the
phase-independent variance [variance of = = Re(a) or y = Im(a)] is now
(7/2)(1 - e) + 1/2 rather than (/2)(1 — e~*). Thus, the time evolution
of the Q distribution can be represented as in Fig. 3.1, but with a circular
contour of somewhat larger radius; in particular, the Q distribution has a
width at ¢ = 0 given by the initial condition (4.17), whereas the P distribu-
tion begins as a é-function; when 72 = 0, this initial width is preserved for all
times. We find then that the Q distribution has a width even in the absence
of thermal fluctuations. We have again set up a correspondence with a clas-
sical statistical process; but now there is noise where before there was none.
What can this mean? The answer to this question illustrates an important
point about the fluctuations at the “classical” end of the quantum-classical
correspondence. Although thermal fluctuations from the reservoir are not
too quantum mechanical — they should be present in a classical theory of
damping also ~in general, the fluctuations ohserved in the distributions de-
rived via the g ha
origin. They are mmu[&stahom of the probabilistic charactel of quantum me-
chanics, and arise through the of the
operators. Therefore, the fluctuations that appear in the classical stochastic
processes that correspond to a quantum-mechanical system via different op-
erator orderings are different. In our present example, the difference in the
variances of the P distribution and the Q distribution arises to preserve the
boson commutation relation. From (3.74) and (3.67), we calculate

((a'a)(t)) ~ (o ) (a(t) = ((@*a)D), ~ (@"()p (a(D)
=na(l-e), (4.22a)
while from (4.5) and (4.21) we calculate
((aa")(®)) = (@' () (a(t)) = (@) (D) - (")) (a(D)y
=a(l-e )+ 1. (4.22b)

The extra fluctuations in the Q representation, which give the “+1” in
(4.22b), are just what are needed to preserve the expectation of the com-
mutator - ([a,a'](t)) = 1.
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4.1.3 Antinormal-Ordered Averages Using the P Representation

‘We should not be misled into thinking that the P and Q distributions are
inadequate on their own for calculating operator averages in arbitrary order.
Of course, an average in antinormal order can first be normal ordered so
that moments of the P dlsmhutwn can be used to calculate the average of
the resulting l-ordered objec dered also be
evaluated, however, directly from the P distribution, without first reordering
the operators. Consider (4.2) with x ,(z.%) written in terms of x(z,z*)
using (4.9). An arbitrary antinormal-average can be calculated from the re-
lationship

ol = W )

= g (e ) e
=t e+ i) (= + i) o)

o .
=%y (" * a(u)) (=)
Substituting for X (=, 2*) from (3.73), we have

(a%'?) = /a’np(a,a')a BP),, (,z + a(u))

2, (2 b gisat giza
:/aap(a,a) o) e

s=s0=0

s=se=0

-0

‘We now integrate by parts, setting P(z,2*) and its derivatives to zero at
infinity, to arrive at the result

(a%al?) = / d’aa"’(a~ a-g—) Pla,a”). (4.230)
Exercise 4.2 Prove also that

(a%a'?)y = / n{‘aa'(u' - %)vP(n,a'), (4.23b)
and

(atPat) = / d’na"’(u+ )'Q(a o), (4.24a)

da*,
(e = [aat o+ 2Y o0 (421)
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As an illustration, let us calculate {(aa')(t)) for the damped harmonic

oscillator using (4.23a) and the Green function solution for the P distribution
[Eq. (3.67)). We set ag(t)equive™("/2)te="ot and then

((aa')®) X
- [#selor ‘(lfr-w]{fm(l—e ) [ L‘.'(ffi(-?!:]}
/d’a {a la— ao(¢)|[1+ le w,)]»m ag(!)}

"{n‘.(l

If A'is a constant,

/ .fang exp[—Ala - ao(t)?] = aolt),
/.Pa la- m](t)lzgexp[f/ﬂa —ao(®)] = %

We can therefore replace a* by a* — ag(t) in the first term in the integrand
(this adds zero to the integral) and perform the resulting integrals to obtain

(a0 = [ [l - aotoP A 0L

1 la
et 225

=a(l—e ") + 1+ |ao(t)?

=(@'a)®) +1,

where the last line follows from (3.68) and (3.69). We have arrived at the
result that would be obtained by fist writing aa! in normmal oder and then
using ts of the P distribution to evaluate the dered operator
average.
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4.1.4 The Wigner Representation

The Wigner representation is introduced by defining a third characteristic
function:

Xs(zr27) = tr(pette" i), (4.25)
The Wigner distribution W (a,a") is the Fourier transform of y(z,2"):
[xgteizre

/a dp /aw dv Xg(p+ v, p — iv)e 0= (4.26)
with the inverse relationship
Xgl2:27) = /d”aW(a,a')e"‘“‘e'm
= /w .u/m dyW (z +iy,z — iy)e? =) (4.27)

The relationship between the Wigner distribution and operator averages
is a little more complicated than the relationships that connect the P and
Q distributions with operator averages. In terms of position and momentum
variables tozand the ts of W(a, a*) give
the averages of operators written in Weyl order [4.10]. Details can be found in
the review by Hillery et al. [4.6). The relevant quantities for quantum optics
are operator averages corresponding to moments of the complex variables a
and a*. These can be found as follows. The exponential in (4.25) has the
expansion

irtatsiza _ §2 Loant L ioom
¢ =3 ="l +iza)

13 s G )

(i) (i)™

it (@"a")s (4.28)

where (a"a™)s denotes the operator product written in symmetric order -
the average of (n+m)!/(n!m!) possible orderings of n creation operators and
m annihilation operators:
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(a'a)s = }(a'a+ aa'), (4.200)
(a"a)s = 3(a'a +a'aa’ +aa'?), (4.29b)
(a'a?)s = 4(a'a? + aa'a + aal), (4.29¢)

(a'a?) = L(a'a? + a'aa’a + a'a%a’ + aa'a + aa'aa’ + a*a'?),
: (4.2

9d)

Then, from (1.28) and the definition of x(z,2") [Eq. (4.25)], symmetric-
ordered operator averages are given by

((aa%)s) = trp(a'?a%)s]

: (430)

orea R
= Wxs(: ,2) .

substituting for x(z,2*) in terms of W(a,a*) [Eq. (4.27)] gives

-+ ot
(i) = [ oy

= (a"7ad),,,, (4.31a)

with

a7at), = /.fa W(a,a")a" (4.31b)

Note 4.3 We have defined the Wigner distribution W (a,a") to be normal-
ized such that [d?a W (a,a") = 1. The Wigner distribution is often defined
with a different normalization, such that [d%a W(a,a*) = x. This is the
case in [4.4] and [4.6]. With the alternative definition W (a, a") is the classi-
cal function associated with the density operator p by writing it as a power
series in symmetric-ordered operators (a'?a%)g and replacing each term in
this series by a*”ad (see Sect. 4.3.1).

The quantum-classical correspondence defined in terms of symmetric-
ordered operators (also antinormal-ordered operators) is not really the most
convenient for applications in quantum optics because it is normal-ordered
averages that relate directly to quantities measured with detectors that ab-
sorb photons. However, often only low-order moments are of interest and the
symmetric ordering is then easily untangled using (1.29a)-(4.20d). More gen-
erally, a symmetric-ordered operator can be written in normal order in the
following way. With the help of the Baker-Hausdorf theorem [Eq. (1.8)] we
write
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(a'Pat)g = gisat+iza

or+a
Bz Y o)

=0

It can then be proved by induction that

ot
iz Voliz)

41ep et gizafy o 1)
x e Beeiel ot a 4 i . (432)
and hence, that
' mmfﬂ 1 4 te-kgak
(aa?)g = s alPkqak, (4.33)
o PRk

The Baker-Hausdorfl theorem also yields the relationship between the
characteristic functions X (z, 2*) and x,(z,2"), and x4(z,2*) and x ,(,2°):
T o e (e W T TS

(4.34n)
xster2)= "(” ‘a‘+lw) = tl(peuaexz'a')eth =¥y (2.
(4.34b)

From these results relationships between the distributions W (a,a*) and
P(a,a*), and W(a,a*) and Q(a,a"), analogous to those given in (4.7) and
(4.11), can be obtained. The derivations are left as an exercise:

Exercise 4.3 Show that

W(a,a*) = %/.{‘,\ e~2h=al p(x, 2%, (4.35a)

Qa,a*) = %/.{uz-’l*-ﬂl‘wu,x), (4.35b)
and that

W(a,a) = cxp(%a%_—) P(a,a*), (4.368)

2
Qa,a) = exp(% aa%a-) W(a,a®). (4.36b)

4.1 The Q and Wigner Representations 113

From the relationships (4.7) and (4.35), (4.9) and (4.34), and (4.11) and
(4.6), the Wigner distribution appears to fall in some sense in between the P
and Q distributions. This observation i illustrated explicitly by the example
of the damped harmonic oscillator. There is no need for a new calculation to
treat this example in the Wigner representation. From a comparison of (4.9)
and (4.34a), we immediately conclude that the method of Sect. 4.1.2 will
bring us to the following Fokker-Planck equation for the damped harmonic
oscillator in the Wigner representation:

P
Bada

'2—11/=[(%+m)£a+("-wﬂ)£d+v(ﬁ+§) w.

(437)

Thus, where 7 appears in the Fokker-Planck equation in the P representa-
tion (Eq. (3.47)], and 7 + 1 appears in the Fokker-Planck equation in the Q
representation [Eq. (4.14)], now 71+ } appears in the Fokker-Planck equation
in the Wigner representation. The factor of } carries over into the solution
for a damped coherent state. By referring to (3.67) and (4.16) we see that
the Green function W (a, a", t|ag, a3, 0), which has initial condition

W(a,a',0lao, a3,0) = 6@ (a - ag) = &(z - 20)8(y - o), (4.38)

is given by

W(a,a" tlao, a3, 0)
| — age(1/2te=iwot |2

- 1 [
T+ - "[ (+3)(=-et)

(4.39)

Then, using (4.35a) and the P distribution for a coherent state [Eq. (3.22)],
an initial coherent state (p(0) = |ao){aol) is represented by the distribution

W (a,a*,0)(0)=(ao) (a0l = "e"'°’°°". (4.40)
By following the steps used to derive (4.21) we find that the Wigner distri-

bution for a damped coherent state is given by

Wi(a,a",)p(0)=lac) a0l

1 Ja — age=(7/2Mte=int|2
- exp a

T3+ Al —e )] T+a(l—e ) ]

[t J 2 (.41)

‘We have now constructed a third correspondence with a classical statisti-

cal process. Here the phase-independent variance lies in between those given

by the solutions (3.67) and (4.21); the picture of Fig. 3.1 still applies, but



114 4. P, Q, and Wigner Representations

now with a circular contour of radius /T/2 (1 — -7 representing the
istribution. As b d for the the quantum

added over and above those coming from the reservoir are required by the

commutation relations and the ordering convention underlying the represen-

tation. From (4.20a), (4.31), and (4.41), we have

§[(a'a)(®) + ((aah) ()] - (0! () (a(t)
= ((a"a)s(®) = ((a")s ®)(a)s(®))

= ((@*a)®)y, - (D), (D),
=a(l-e )+ 1. (4.42)

This is the average of the expressions in (4.22a) and (4.22b). The factor “+1”
is the contribution obtained from the boson commutation relation by normal
ordering the operator (a'a)g = }(a'a + aa).

4.2 Fun with Fock States

‘We have followed the treatment of the damped harmonic oscillator prepared
in a coherent state throughout our discussions of the P, Q, and Wigner rep-
resentations. For this example, each of the three distributions has all the
properties of a probability distribution, and we can therefore associate the
quantum-mechanical problem with each of three classical statistical descrip-
tions. We. sho\lld remember, Ilawever lhnl thcdlstnb\luons obtained from the
d to have all the proper-
ties of probublluy Qistribution. We have already seen in Sect. 3.1.3 that the
P distribution for a Fock state is a generalized function, involving derivatives
of the é-function. We now explore the representation of Fock states a little
further.

4.2.1 Wigner Distribution for a Fock State

Let us derive the Wigner distribution for the Fock state [1) using (4.35a) and
the form of the P distribution given in (3.40). We have

W(aya®) = %/“mc-m_nvl‘_!,m’ 5(x)

aAaA’

—al? A
2Aa-al? AT

A=Ae=0

(4.43)

? 220’ o
ot e
\
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To evaluate the right-hand side of (4.43) we consider the more general ex-
pression (for any complex constants A, B, and

> ~AN? BALCA [ B & A" = AN
anonC T TN e
—ne (i 2 o4 )
= BN (B+ —) (C— AN M (4.44)
For n < 1, it can be proved by induction that

(E+ —) (C— AN

- o\ . N - o\

_(5+a) AKC - AN) (B+§) .

(4.45)

k)lA"(C AN)E

AKB = ANK(C - AN,

(4.46)
where in the last line we have changed the summation index, with { — k — k.
The right-hand side of (4.43) may now be evaluated using (4.46): sef
A=1land B* = C = 2a, the Wigner distribution for the Fock state [1) is
given by

W(a,a") = (4.47)

k=0

The distribution (4.47) is an ordinary, well-behaved, function. Neverthe-
less, it can clearly violate one of the conditions required of a probability
distribution - it need not be positive. The one-photon Fock state illustrates
this point; for I = 1,
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W(aa®) = Ze~ 2 (4]af? - 1), (4.48)

which is negative for || < }.
Note 4.4 It can be shown that x(z,2*) is square integrable and, hence,
that its Fourier transform W (a,a*) is aluways a well-behaved function; there

is no need for generalized functions in the Wigner representation. To prove
this result we use (4.34) and (4.1) to write

L@t = 1 [exy
-l Uﬁ Xl z-)f"‘a'x-m].
Then, introducing the identity in the form (3.9) and using the cyclic property
of the trace, and the relationship between x (2, 2*) and P(a,a*) [Eq. (3.72)],
we find
L@ = %tr[/d’a/ﬂzxr,(z,z')(ale"""'pe"“m)]
- _cr[/d’a (alpa) [y (a2 m]
—tr [p/.ﬂam)(aw(n,a')]

=tr(p?).
The last line follows from (3.15). The square integrability of x(, =*) follows
because tr(p?) < 1

As a simple check on our result for the Fock state Wigner distribution, let
us evaluate (a%a),,, and show that it gives the symmetric-ordered average

Hata+aa'y = §(2(a'a) +1) = 3(2 +1). (4.49)
From (4.47) we obtain
(@a)y = [ daW(a,a*)aa

.
z Z(—l)'”“k,—'l [#ac e pafial

“E( 1)+ k')’(l 5 zk/;Wd,/:'dM.zﬂrzm:m

e k+ 1)
= ;kzﬂ(‘”‘ k(k!)’(:-k)!zuh 2~+J) .
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The integral over r has been executed by performing k + 1 integrations by
parts. The summation on the right-hand side may now be split into two pieces

by writing
. . .
k1)t L L
kz w2 ; e *Eﬂ W

Then, changing the first summation index, with k — 1 — k, we arrive at the
result

1

1)
3 2,2( 1)t-n- kk'[(l—l))—k]
= 2[2'(2‘1)' T+2-1))
=i@+1).

(a%a) 2t 4 Z( -

Thus, we recover the symmetric-ordered operator average (4.49) for a Fock
state.

4.2.2 Damped Fock State in the P Representation

Nothing in the derivation of the Fokker-Planck equation for the damped
harmonic oscillator precludes its use in situations where the distribution is
a generalized function, or takes negative values. We certainly lose the corre-
spondence with a classical statistical description under such circumstances,
but the mathematics works just fine. The Green function for the appropriate
Fokker-Planck equation provides all we need to find the time evolution from
an arbitrary initial state; we simply integrate the Green function against the
representation for the initial state. This will work even if the initial state is
represented by a distribution that is more singular than a é-function. For
an interesting illustration we will calculate the P distribution for a damped
harmonic oscillator prepared in the Fock state [1). Recall that a Fock state
is represented by a distribution involving derivatives of a two-dimensional
b-function.

The Green function solution to the Fokker-Planck equation in the P
representation is given by (3.67). Using this result and the distribution for
an initial Fock state [Eq. (3.40)), we have
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Pla,a’,t) 0=
- / X P(a, % AN 0 PO\ X 0) oy

1 Ja— de~Fte-ivot®
=[# A= o {‘ﬁ

5

— el
*qe oo

R 1
T lanaa T w1l —e )

e Femiwot 2]
p[_%] o }

where the integration is performed using (3.37). Expanding the function in-
side the curly bracket,

Pla,a®, )=

(
1o 2677 — (1 - ")
* l‘!a,va»‘{exp[_m T -

o ae= (112t givnt
xexp[A ac D } .
i A=Ar=0
The derivatives can be evaluated using (4.46), with
e (1 ) e (r/tgiont
= B'=C= :
A= —a—en B

the P distribution for a damped Fock state is then

Pla,a*,t)p0)=ia
1 —na(l-e )]
u

T (i e "1 n(l—c"") u(l—e'T‘)

'
x Y (~1)tk
;o k'(l

Jaf2e=t k
{ﬁ(l —eTMlem —a(l - e‘”")]} )
(4.50)

In the long-time limit this expression clearly approaches the Gaussian
describing a thermal state with mean photon number 7. This asymptotic
solution is, of course, independent of the oscillator's initial state. To follow
the evolution of P(a,a*,t),(0)=n for short times, it is helpful to rewrite
(4.50) in an alternative form. We define
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2t _ (1 — et e
e A-e) o e .
Al —e7) Al =)

and then (4.50) reads

A=

P(a,a*,)0)=nq
1

- o 1 pyer B
~ —e”‘)“p[fﬁ(l —E’")]Eg(_” Ha—-0t
x %A“"(—A,\')*(—M)*.

Equation (4.46) may now be used a second time, with B = C = 0, to obtain

Pla,a’, 0=y
2 .
R Y . 3 Lo P,
wn(l—e=) n(l—e"‘) NN

After resubstituting the explicit expressions for A and A, we have an alter-
native form for the P distribution for a damped Fock state:

Pla,a”, Opop=ia

1 o2 e a1 - e

= F”‘p[e ST —— vl)][ p=oan ]

9 [ laf2e=7t

Balda {xh(l —e ) T Al = e e —a(l — e"")]]}'
(a51)

From this expression

[
Pla,a”,0)0)=i = ,—.6‘"‘ Maa-’ {,_n,(me""' ’““)}- (4.52)
Equation (4.52) shows explicitly the time-reversed approach (¢t — 0+) of
P(a,a%,1) to its initial form in terms of derivatives of a two-dimensional
é-function.

Note that if . # 0, P(a,a",1) is actually a well-behaved function for all
times ¢ > 0. Thermal fluctuations destroy the singular character of the initial
Fock state as soon as the interaction with the reservoir is turned on: for short
times the singular distribution representing the initial Fock state is replaced
by a derivative (of order 2I) of a very narrow Gaussian whose variance is
growing linearly with time. Nonetheless, P(a, a*,t) remains unacceptable as
a classical probability distribution for a finite time after ¢ = 0. During the
early part of its evolution it takes on negative values - for example, for [ = 1,
(4.50) has the form
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Pla,a%,1),

- 1 la?
= A=) ”“’[ Al— e"")]

aftet
* Fr—eE) @5
This distribution takes negative values inside the circle |af2 = A(1—e~7)[1~

(e — 1)] during the time interval 0 < ¢ < In( + 1) - In .
Exercise 4.4 Show that (4.50) gives

((@'a)(®) = (a%a(D)p = e + A1 - &™),
in agreement with (1.70).

4.2.3 Damped Fock State in the Q and Wigner Representations

We have seen that the Q distribution is proportional to the diagonal matrix
elements of p in the coherent state basis, and therefore it cannot become
negative [Eq. (4.6)). Indeed, the Green function (4.16) and the distribution
(4.10) representing an initial Fock state in the Q representation are every-
where positive; it is clear then that Q(a n t),(,, al rm a damped Fock
state will be at all times. Tc ion explicitly
we use (4.16) and (4.10) to write

Qaya*,t)p0)=iy
= /d’AQ(“v“'l“’\wA'vo)Q(Av’\'vo)p(ﬂ)Sll)(“

~ 1 la = de~dtemint'] 1 _ A2
= /‘“ F (=D ke ey F

exp

[ + 1)|(.l‘— w‘)]

- et
x l-/dmuﬂexp[ |A|2%]

1
=D

—('1/2)lewot]
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_ i . Jof?
TrEr DA - P TEF DA e
11 241 € (=) "‘)
L1 i g A0
2ale=(r/2t
)" o [y ene]
where r = ||, and ¢ = arg() — arg(a) + wot. The angular integral gives a
Bessel function. With this Bessel function expressed i its series representa-
tion we find

Qla, ™, )po)=iy

exp

[ (ﬁ+n|<"1|2— w*)]

> e~ 4+ (7) + 1)(1
xdg [Carrmt el f AN

> rlaje=(7/2t
<y A e

1
T rmEN(I-e)

2%

_ 1 [ “
TRmAD e | (ﬁ+1)(1—e”‘)]
1& 1 Jaje=(/2)¢
* ,—;X_? Wy [(u+ NI e.,.,]
Xz/ d,,m,.me,p[ L ltn(l-e)

(A+1)(1 =€)

The remaining integral is performed by repeated integration by parts and
gives

Qa,a™, )=y
1

- o
TARE D - “”[ @+ —e-~~)]

11 laje-(72t 1% (n+1)(1 — e~ FHH
XE;W (ﬁ+|)(1—e-~‘)] kTR | -

The Q distribution for a damped Fock state is then



122 4. P, Q, and Wigner Representations

Qlas ™, o=yl

_ 1 i al? 1[a+10- ‘*')]‘
Talra—e ] @ DA - e )| I T a(l-e 1)
(k+0! Jafze= *
E W e e (45

Again, this expression clearly shows the evolution to a Gaussian distri-
bution describing a thermal state in the long-time limit - now with the in-
creased variance (72 — 7+ 1) discussed below (4.21). Our result does not have
the most convenient form, however, since the summation includes an infinite
‘number of divergent terms in the limit ¢ — 0. OF course, Q(a, a,0) does not
diverge; this is prevented by the exponential multiplying the sum. It would
be nice to have a form that cancels the divergent sum explicitly to reproduce
the Q distribution for the initial Fock state in an obvious way. This can be
accomplished using the following result:

k+ 1) o "
Z ( ,:T)z) (kz_: Lo ,)

- E(z‘e’)
[
14

it (4.55)
SR RIR
The third line follows from (4.45), with A = 1, B=C =0, and n = 1;
also, in the last line we have changed the summation index, with  — k — k.
Using (4.55), equation (4.54) may be recast to give an alternative form for
the Q distribution for a damped Fock state:

Qla,a*,)p)=i i
(n+ 1)1 —e )]
1 +n(1 = c"") n T+a(l—e )
g Ja2e=(/2¢ k
* ; FI-R R @+ D0 e +a(l— e‘”f‘)]}

1
AR -en) "‘"[

(4.56)

Equation (4.56) produces the correct initial distribution in an obvious way
(only the k = I term in the sum survives), and it also produces the Gaussian
form in the long-time limit. It is clearly everywhere positive; for example, for
=1,
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1 [ lal?
M+ad—e 0] V[ T+a(l—et)
ot

Q(ava,) !

laf
x { ST e 8 (457)
which is to be compared with the result (4.53) for the corresponding P dis-
tribution.

Exercise 4.5 The Wigner distribution can be derived in a similar manner.
Show that the Wigner distribution for a damped Fock state is given by

W(a,a", ) yo)=piyy

- 2 [ o

’w[1+2n<1-e»~')] Pl l+2n(l—e"‘)]
i+ (1

Z( v k'(l k)'k' [1”7.(14-71)]

KK jaj2e=t 4
2 < k=)t @+ (T - e )[1+ 2a(1 - e }
(4.58)

Like P(a,a", L)M,.‘,)(,,. this distribution can be negative. Analyze its be-
havior for [ =

4.3 Two-Time Averages

In Sect. 1.5 we obtained expressions for caleulating two-time averages from
an operator master equation. We have now seen that the operator master
equation can be converted into a partial differential equation - in the case of
the damped harmonic oscillator, a Fokker-Planck equation - by setting up a
correspondence between p and a phase-space distribution function. How can
the formal operator expressions given in Sect. 1.5 be cast into phase-space
language to allow us to calculate two-time averages at the “classical® end of
the quantum-classical correspondence? This is the question we now address.
Answering the question in a general way requires that we first develop a little
more formalism. The notation of this formalism s itself a bit burdensome, and
certainly some of the calculations we eventually perform with it are rather
arcane. It is perhaps helpful, then, to look ahead to (4.100a) and (4.100b).
These state the result used most widely in applications; namely, that normal-
ordered, time-ordered two-time averages, such as those needed to calculation
an optical spectrum or intensity correlation function, are given by phase-
space integrals in the P representation analogous to those met in classical
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statistics. The effort expended with the formalism allows us to generalize
from this result in two directions: to determine which two-time averages are
given by similar phase-space integrals in the Q and Wigner representations,
and to see how derivatives of the phase-space distribution must be taken, as
in Sec. 4.1.3, if inappropriately ordered operator averages are considered.

4.3.1 O lassical Ce for General O 't

Consider the relationship defined by (3.70) and (3.72) between the opera-
tor p and the distribution P(a,a"). There is actually no reason to restrict
this relationship to density operators; we can generalize it o set up a cor-
respondence between any system operator O and a function Fy” (a,a*) (we
use “function” remembering that this may be a generalized function). As a
generalization of the characteristic function x(z,2°) we define

B (2,27) = mte(0e'=" " ei=2); (4.59)
the generalization of the P distribution is then
@ . 1 o) \e-iz'a® —iza
F§(a,a%) E /d”zF(‘,’(z,z )e emiza, (4.60)

with the inverse relationship
Bz, = /fapg’(a.o')e""-'e'". (4.61)

Taken together (4.59) and (4.60)set up a correspondence between the oper-
ator O and the phase-space function 3 (a, a*). In place of the relationship
that gives normal-ordered moments in the P representation [Egs. (3.71) and
(3.74)) we now have the more general result

tr(Oa'?a?) = F§(z,27)

1 o
?a(iz-)"a(iz)"

2=2=0

[ar e e

= o )’3(tz)°

2=2e=0

- ;/dz(x F{(a,a%)a" (4.62)

Within this scheme the P distribution is defined with
R CE (4.63a)
P(aya) ,‘rr,“'(a.c.'). (4.63b)
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We have slipped in some changes here that need an explanation: a factor
of 7 has been added in (4.59) and the subscript N on x, has been replaced
by the superscript (a) on F”). This has been done with the following in
mind.

Consider an operator A expanded as a power series of terms written in

antinormal order:
A= Aa,al) =Y Cfatal?, (4.64)

v

where the CJ%) are constants. Then, from (4.59),

F(z,2%) chu(u'u"'a‘c'"nv)

= ~Z ”a—(u o ).

Introducing the expansion (3.9) for the unit operator,
PO (s o) (@___ O 1/ 2 ixval yisa
F(z,2 )’"yz':c”o(iz-)”a(iz)“" o[ EANAE e
rra -
_yow o i2A° iz
= Zc”a(iz-)"a(uy/we N

o).

Z b )’a(u)"
We substitute this result into (4.60) and integrate by parts to obtain
") (. a) = (@
F{(a,a%) = c /rf‘z [a(u ),,a(u),b(z)]

Cta;/,pzﬁ(z)a(” T il gmiza

Thus,
F{(a,0%) = 3 C@a7at = Afa,a”). (4.65)

Equations (4.64) and (4.65) state that, for operators written as an anti-
normal-ordered series, Fy’(a,a”) is obtained by replacing the operators
a and a' in that series by the complex numbers a and a°, respectively.
F§?(,a) is called the antinormal-ordered associated function for the oper-
ator O. The ipt (a) denotes the antinormal-ordered associated func-
tion. The factor of 7 in (4.59) leads to the direct association of functions and
operators expressed by (4.64) and (4.65), rather than with a 1/7 multiplying
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the right-hand side of (4.65). We must be careful now not to become confused
between our “normals” and “antinormals”. In (4.63b) we see that P(a,a"),
which is used to calculate normal-ordered averages, is, apart from a factor
of , the antinormal-ordered associated function for p. This relationship will
become clearer as we follow the idea of associated functions a little further.

Analogous definitions of normal-ordered and symmetrically ordered asso-
ciated functions for an operator can be given. We define the normal-ordered
associated function F§”(a,a*) in terms of its Fourier transform F$(z,20)
introduced as a generalization of (4.1): We define

F§(s,20) = mtr(Oc o), (4.66)
and )
F§'(a,a) = p]d’z Bz, )i (4.67)
with the inverse relationship
(), R (n) \pizTa” giza
B (s, )—jd’al"é (@)= g, (4.68)

In place of the relationship that gives antinormal-ordered moments in the Q
representation [Eq. (4.5)], we have

tr(Oata’?) = 1 / @aFg)(a,a%)a" (4.69)
*
The Q distribution is ional to the l-ordered associated function
for p:
Xa(52) =2 RS (4.70a)
Qara’) (4.70b)

Similarly, the symmetric-ordered associated function F§(a,a%) is de-
fined in terms of its Fourier transform ;" (z, 2*) introduced as a generaliza-
tion of (4.25): We define

E§(z,2) = mtr(Oe'="a"+ism), (.11
and L
F§aa’) = F/d’z F§ (2,2 )e (4.72)
with the inverse relationship
Pg‘(z.z')=/a’arg’(n,a-)e"' (4.73)
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In place of the relationship that gives symmetric-ordered moments in the
Wigner representation [Eq. (4.31)], we have

5 1
tr[O(a"’a“)s] =z / daFy(a,a%)a""al. (474
‘The Wigner distribution s ional to the ic-ordered associated
function for p:
1
Xs(z2) = ;F}"(z,z'), (4.75a)
1
W(a,a* ;F}"(a.a')A (4.75b)

Relationships between the various associated functions, and between their
Fourier transforms, can be obtained as generalizations of earlier results: equa-
tions (4.9) and (4.34) generalize to give

(2 = e P ED (220 = e HPED (2,20 (a76)
Eqs. (4.7) and (4.35) generalize to give
F§(a,a®) = H‘aue’l*-""rg’(,\,x)\ (4.77a)
F§(a,a") = ;/d’)m-’“-"l’r(‘;‘(,\,x), (4.77b)
F§(a,a%) = %/d’/\e"“’""l’g’(/\,)\‘): (4.77¢)

finally, Eqs. (4.11) and (4.36) generalize to give
o

—) F(aa%) = ep(5 2
Gagar) o (M) =P

) P8,
(4.78)

) -

We can now understand the relationships between the various associated
functions for p (the P, Q and Wigner distributions) and the ordered operator
averages that are calculated from their moments in a more general context.
First, we note the extension of the result expressed by (4.64) and (4.65) to
normal-ordered and symmetric-ordered series. For an operator N written as
a normal-ordered series,

N = N(a,a') = Y Clal?as, (4.79)
m
the normal-ordered associated function is obtained by replacing a by a and

al by a*:
F{(a,0) =3 Cia"at = N(a,a). (4.80)
o
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For an operator § written as a symmetric-ordered series,
§=8(a,a") =Y Cl(ala)s, (4.81)
va
the symmetric-ordered associated function is obtained by replacing a by a
and a' by a*:

FP(a"

=Y Claal = S(aa’). (482)
"

Now, if Oy and Oy are arbitrary system operators, and Nz = Na(a,a') = Oz
is the normal-ordered form of Oz, we can apply (4.62) to each term in the
series expansion of Na(a,a') to obtain

t1(0102) = (01 No(a,a')]
- %/d’aFl(-;:)(a.n')Nz(a,a')
- % / #a F (0,0 FS) (@,a%), (483)

where the last line follows from (4.80). Equations (3.74) and (4.5), giving
normal-ordered and antinormal-ordered operator averages as moments of the
P and Q distributions, respectively, are special cases of this more general re-
sult. With O, taken as p, moments of the antinormal-ordered associated func-
tion for p give the averages of operators Oy written in normal-ordered form.

Alternatively, with Oy taken as p, moments of the normal-ordered associated
function for p give averages of operators Oy written in antinormal-ordered
form. A similar result can be obtained by writing O; as a symmetric-ordered
series and using (4.74) and (4.82):

5 om L D 2 E a0
#(0:0) = ;/far{,j(a,a )ES) (@,a%). (4.81)
(4.31) between sy ic-ordered operator averages and

the moments of the Wigner distribution is a special case of this result.

Note 4.5 The association given by (4.79) and (4.80) is easily proved following
an argument analogous to that used to establish (4.65). A similar proof of
the association given by (4.81) and (4.82) is not so straightforward because
partial derivatives with respect to (iz) and (iz*) act in a rather complicated
way on ¢f+'@' 2 (see Sect. 4.3.5). A simple proof can be devised, however,
by arguing backwards as follows: Set £y’ (a,a*) = a*?a%. What, then, is the
operator O having this symmetrioordcmd associated function? The answer
to this question can be obtained by converting everything into normal order,
using (4.78) to write
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™ (. a%) = 1
F (a0 )7exp(§

inpa) 4

Then, from (4.79) and (4.80),

2" 1L
2K (p - k) (g - R)!
But (4.33) tells us that this is just the symmetric-ordered operator (a'?a?).

4.3.2 Associated Functions and the Master Equation

We saw how to derive an equation of motion for the P distribution to replace
the operator master equation in Sect. 3.2.2. Generally, we will refer to such an
equation as a phase-space equation of motion. We now see what this equation
of motion looks like in the language of our generalized formalism of associated
functions for arbitrary operators.

Let us start with a rather formal summary of the derivation of the equa-
tion of motion for the P distribution. From the operator master equation
(3.1) we write

—tr[[l(tje""

which, after substituting the explicit form of £ for the damped harmonic
mclllntor is just (3.76). In the language of associated functions (4.85) states
that

] = e[t es], @ss)

ot F(a2%) = By (,27). (4.86)
‘The Fourier transform of this equation gives the equation of motion for the
antinormal-ordered associated function for p - the P distribution (multiplied
by 7): R

@ (4.0%) = F@ .

siFsn(a’) = Fiy(aa”). (4.87)
Formally, this is the Fokker-Planck equation. But the next step is needed to
reveal its explicit form as a partial differential equation; this is the step where
most of our effort was spent in Sect. 3.2.2. We must express Foy, (a.a*) in

terms of F({)(aa*), with the action of £ on the density operator p trans-
formed into the action of some differential operator on the associated function
for p. Leaving out the details, the aim is to write

(o) . (@ .o
Ffly(a,a®) = L ’(u.rx P

%) Fii)(a,a), (4.88)
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where L(@(a,a%, . %) is a differential operator associated with £. For any
particular example this must be found from an explicit calculation similar to
the one in Sect. 3.2.2; for the damped harmonic oscillator

9 0
(a)| .
L (a“"‘aa'_a )
9 .. &
0) eza” + M- (489)

Now (4.87) becomes

9 1@ (0 o) = 1@(aan 2 2 ) F@ (4 0
I E(@an) = 1 '(a,a ,ﬁ,g)l:‘:“))(n,n ) (490)
and setting .
Plaa’) = ZFi)(@a”), (4.91)
the equation of motion for P(a,a’,t) is
9 pavar,t) = L(avar, 2, 2 .
FiPl@an) = L9(aa’, 5o, 5o ) Plasa’o). (492)

More generally, we may write (4.88), not just for density operators, but
for any operator O. Then, by induction,

. w0 0N @0t ;s
Fik’é(a.a')z[L(')(a,a o_(.ﬂ)] F§aa’),  (493)
from which it follows that

@ .
Fopieno(@@”)

Lo gt ) (o 0). (4.94)

This result, and (4.83) from the last section, will serve as centerpieces in
our conversion of the expressions from Sect. 1.5 for two-time averages into
phase-space form.

Of course, we define the differential operators L((a,a", 2%, 52) and
LO)(a,a*, £, 52<) which govern the dynamics of the Q and the Wigner
distributions, respectively, in an analogous manner. For the damped har-
monic oscillator L(a,a”, 2, 52-) is given by (4.89) with the replacement
7t — i+ 1, and L®(a, 0", &, 52= ) is given by the same expression with the
replacement 7 — ii + 5.
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4.3.3 Normal-Ordered Time-Ordered Averages

in the P Representation

We first set ourselves the task of finding a phase-space form in the P repre-
sentation for the average (7 > 0)

(@' ()N (t +7)a?(t)) = tr{(e[a%p(t)a'?])) N}, (4.95)
where the expression on the right-hand side is obtained from (1.102); N can be
any system operator written as a normal-ordered series [Eq. (4.79)]. Equation
(4.95) provides an expression for calculating a general normal-ordered, time-
ordered, two-time average - every a' to the left of every a, every a!(t +7)
to the right of every af(t), and every a(t +7) to the left of every a(t). These
are the averages that most interest us for applications in quantum optics.

Using (4.83) and (4.94), we write the average (4.95) as the phase-space
integral

(@) (t+7)a (1))
1 (a) n) .
=: /afa ES oasptars)(@a") Fy(a,0%)
-l b )
Then, from (4.60) and (4.59),

Fpar(@0°) = 5[5 E e

= %/d’zmr[n”p(t)a"’e"""e“"]c

1 - -
N R

skl 1) —ista® i
J#: st e e,
Substituting for £{¢)(z,2") from (4.61), we have
(@) ol ot @ et A" it
Figun(0:0) = 3 [+ oSy [ e B0 ]
 emizta”gmiza
1 @) 50 (A"-a*;
_ 7/(,2,\,,-:“»’()“* ) pAq/IﬁZE.x (A =a") giz(A-a)
1 @ (3 A)A*
- F/d’u‘:(],(,\,,\ IAPATSD (A — a)

= E@)(@.a%)a"ar. (4.97)
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We now substitute this result into (4.96) to find (7 > 0)
(@P(ON(t+7)a?(t))
= % / o [e”"("v“'-#-xﬁ')'?,ﬁf],(a,n')n"u"] F(a0%).
(4.98)

At first sight, this expression may seem to be a rather useless formal result.
However, a little more work casts it into a simple form — a form which might
already have been anticipated. In simpler notation, (4.98) reads (v > 0)

(@P(ON(t +7)a’(1))
= [afet e dea) pla, ot | Nt ), (499)

where we have used (4.91) and (4.80). Now the action of the propagator
exp[L@(a,a*, &, 52) 7] on the 6-function ) (a — ag) generates the Green
function for the equation of motion (4.92). This suggests that we should write
the operand of the propagator in (4.99) as

P(a,a,t)a"Pat = / @052 (o~ ao) Plao, a3 e,
whence (7 > 0), in the P representation a normal-ordered, time-ordered,
two-time average is calculated as

(@ ()N (t +7)a?(t))

= [ [Rasairaiiia,a’) P, ian,05,0)Plasa.0

= (@a)ONE+ 7)), (4.100a)
‘where we have introduced the notation

((aPa?)(ON(t+7)),

/ #a / Pag aiPalN(a,a")Pla,a%, t + 700,08, ),
(4.100b)

P(a,a’,t +7500,05,t) = P(a,a’,7|ag,a5,0)P(ag, ag, t) (4.101)

is the two-time, or joint, distribution. Thus, the correspondence with a clas-
sical statistical description has been extended one step further. Equation
(4.100b) is formally equivalent to the formula for calculating two-time aver-
ages in a classical statistical theory.
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4.3.4 More General Two-Time Averages
Using the P Representation

We have seen that antinormal-ordered one-time averages can be calculated
using the P representation [Sect. 4.1.3]; although, with some inconvenience,
since the expressions for these averages involve derivatives of the P distribu-
tion. The situation is similar when we consider two-time averages that are
not in normal-ordered time-ordered form. To see how (4.100) must be modi-
fied to give these averages we will seek a phase-space expression using the P
representation for the general average (v > 0)

(Orqn(N(t+7)0L,0(0) = r{(e5710} b (O)0rgm) N}, (4.102)

where .
Oy oy = atrab2aths, (4.103)
and N is again the arbitrary normal-ordered operator defined by the series

expansion (4.79). Once we have a solution to this problem, results for various
l-ordered and antis I-ordered operators will follow

o

with little extra effort.
We begin as before, using (4.83) and (4.94) to write
(Orqm(ON(t+7)0,,(0)

- i/‘ﬂ“ u-’(.... e ,ﬂ,)v,.u (@ )]p""(a o)

P00,
= fafertem et /d*zf’i;l?,m,o,.,w
xe""“'e"""] F{ 0" (4.104)

the second line follows from (4.60). Our aim now is to express the function

(00,0707 i terms of FG)(z,2%) and its derivatives. Using (4.50)

and (4103), e have

pla) . n, - , m, al giza
F‘(‘)ﬁmﬁma“m(z,z ) = mtr[a"a'a’ p(t)a'"a%atmet* " 24
- mr[p(z)a"a'a""e'f'ﬂ'e'mn"n"’n']
= I ate[p(t)atma%e’ ™ e =eatrar],

iz )
and then, from (3.78),
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FG) 000,57
- 3—(11'7;_;:i2),_ mtrfp(t)al"e’ ™ ¢ (a + iz")ala’]

n ) ot
a(ua)':' T (a(") +1z) mtefp(D)al"e " eatvat]

- (imma() (am) i) el ol + i e

N treiza’ iza ]
8(‘2)-}1; (a(u 5 +-z) tr[p(t)at"e’* " e%a’]

= )
o
= 806" (a(-x) i )v(a(u O] *")

I* pa)(, e
o e

We write this to reflect the order of the operators in (4.103):

, ) o
B o, 57 a(u-) (49(‘2) Wy
”

r 9 (@) (5 o
X 3G (8(1:) ’) Gy Fn )
(4.105)
We now substitute the Fourier transform of F{f) (a,a”) for F{f)(z,2") to
obtain
F (2.2)

0' p.aP()0r g.m 4 » oo
am " o a N

= (m ) 3= B (a(-‘z-) *“) e

/m 0 (0, )N

a D\ yem iztar id
(a) oY 7 nyer v iz i
:/fAFpm(A,«\ x (A + )A X (A+m_) AT A

/J,A[A.M(A,_) A.,An(x._g) ED )] s o,

(4.106)

where the last line follows after repeated integration by parts. When we
use this result in (4.104) the integral with respect to 2 gives a 8-function,
6@ (a— ).] and the integral with respect to \ is then trivially performed; we
find (7 >
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Oram (N (t+7)0},,(0)
= fafrotenteatroem (o 2o

Y e n
xn"( - %) a*F{f) (a0’ )]P‘ )(a,a*). (4.107)
1If we proceed, as below (4.98), to express this result in terms of P(ao, aj,t)
and P(a,a*,7|ag, a3,0), (4.107) becomes (r > 0)

Orqm®N(t+7)0}, (1)
- /.pn /d’a.,N(n.n')l’(a.a'vflaovoﬁ-“)

xag™ ( ag - ﬁ) ag’ag" (ﬂn - al) a* P(ag, 0, t).
(4.108)

The replacement of a'” and a? by differential operators, below (4.104), may
also be performed in the reverse order; this gives an alternative to (4.108) in
the form (r > 0)

(Orqm®N(t+7)0},,(0)
=[¢20/4=ao N(a,a*)P(a, ", 7lao,a3,0)

oo (55- 2V agai (on— L) o Planiy .
a0 (05 = ) 'ai™ (o0~ goz) i (ﬂﬂv"o; )
4.109

With p = ¢ = 0, both of these expressions reproduce the result (4.100)
for the average (a!™*+"(t)N(t +7)a"**(t)). When p # 0, or q # 0, derivatives
of P(ag, a,t) are involved, as in (4.23). Equation (4.23a) can be recovered
from either (4.108) or (4.10¢ r example, with ¢ # 0, N = a'?, 7 = 0, and
larly, (4.23b) can be recovered with p # 0,
=m=n 0. There are other combinations
of paumetem that also recover these earlier results.

A number of results for two-time averages of operators expressed as
normal-ordered and antinormal-ordered series now follow from (4.108) and
(4.109). We introduce the normal-ordered series

=Ni(a,a') =5 atrat, 4.110a)
b
va
Nz = Nya,a') = Y Clatrat, 4.110b)
24
v

and the antinormal-ordered series
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Ay = Ay(a,a') = 3 Cfpatal?, (4.111a)
X

Ay = Ay(a,at) = 3 Clatal?. (4.111b)
e

Then, applying (4.108) term by term, we prove the following (7 > 0):
(M(ON(E+7)No(1)
:/d’a/d*a,,N(a,a')P(a,a',r|an,a5,0)

- - a .
« N,(an - ai{;a,o;) N:(an,n.; - 370) Plag,aj ).

(4.112a)
(RON(t+7)Aa())
= [&a /.ﬁm,N(a,a-)p(a,n',ﬂan.a;,o)
- 0 N- )
x Ny(ag = 5—, a5 ) A2( ag,af = 5— | Plao, ag,t),
( %5 ) ( 8"") (4.112b)

(A(ON(t+7)Na(t))
- / Pa / g N(a,a*)P(a,a’,Tlao, a3, 0)

%0 a%a,a,;) Nafan,ai - =) P(nn.m;vl)v“ -
(AN (t+7)Az(t)

- / Pa / @ag N(a,a")P(a,a",7la0,a3,0)

- a L\ ._ 9 .
x A|(ao - BT‘.)v"o)Az(&mﬂo - rﬂo) P(an.ﬂmt)-“ o)

The arrows indicate whether the power series are to be written with the
differential operators placed to the right or to the left. Equation (4.109)
allows the order of the functions Ny, Na, A1, and Ay to be reversed in these
expressions.

Note 4.6 We have not exhausted all combinations of normal-ordered and
antinormal-ordered operators here. If N is replaced by an antinormal-ordered
series [Eq. (4.64)], it can be shown that N(a, a*) may be replaced in (4.112a)-
(4.112d) by either A(a— 52, a*) or Aa,a” - 7%). The resulting expressions
reproduce (4.23a) and (4.23b), respectively, when Ny = Ny = A; =
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and A = a%'?. To prove this, use the relationship between F{" (a, a") and
F{"(a,a") given by (4.78).

4.3.5 Two-Time Averages
Using the @ and Wigner Representations

Just as the operator averages corresponding to the moments of the single-
time distribution vary from one representation to the other, so too do the
averages corresponding to the moments of the two-time, or joint, distribution.
In the Q representation a calculation parallel to that of Sect. 4.3.3 shows
that antinormal-ordered, reverse-time-ordered, two-time averages are given

by (r20)

(a*(DA(t+)a'?(t)) = ([@TaD) AT+ 7))g. (4.113a)
with
((@Pan)(OATE+7)g
s/.fa/d’ana;,"ag/q(a,a‘)q(u.a',:+r;an,a.;,t),
(4.113b)
and

Qava’,t+ 7300,03.1) = Q(a,a",7lag, 3. 0)Q(ag. ag. 1), (4.114)
where A is any operator written as a series in antinormal order [Eq. (4.64)).
More general averages not of the antinormal-ordered, reverse-time-ordered
form involve derivatives of the Q distribution after the fashion of (4.112a)
(4.112d).
Exercise 4.6 Show that (7 > 0)
(AOA(t+7)Aa(1)
=/d’n/:ﬂaoA(a.o')Q(a.a'.rlao.a,;,O]
x Banag + ), O o) Qao,ag.t
1{ @0, a9 Bag) @+ Ev% (a0, g, t),
(4.115a)
(Ai(OA(+7) V(1)
:/d?a/.faa Al,0")Q(a o 7lag. a3, 0)
wf L d\= 9 . .
x Ay ag.a5 + o, | Naf o + aT';,ag Qlao, a5,t),
(4.115b)
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(Ny(OA( +7)Aa()
= / da / d*ag Aa.a*)Q(a,a”, 7|ao, a3, 0)

d
N0, + 50 ) T + 2 03) @(an, ),
( da ) ( 95 ) (4.115¢)
(Ni(OA(t+7)No(1)

=/dza/‘{'aoA[a,a')Q[a,a',‘rlamﬂﬁ,o)

7, P A .
x N|(ao,nu + an.,)N’(a° + a_a""“) Q(ag, ag,t).
(4.115d)

As mentioned in Note 4.6, if A is replaced by an operator N' = N(a, a') writ-
ten as a normal-ordered series, A(a, a*) may be replaced in these expressions
by either N(a + g%,0%) or N(a a* + ). From the resulting expressions
we can recover (4 24a) and (4.24b) by setting Ay = Ay = Ny = Ny = 1 and
N(a,a') = a'?at

‘We might expect the averages that spond to its of the
two-time distribution in the Wigner representation to be some rather tangled
mess. The symmetric-ordered operators related to moments of the one-time
distribution are themselves a little imposing beyond the first few orders; how
must we distribute the “t's” and “¢ + 7's” within the terms of the symmetric
operator sums [Eqs. (4.29)] to come up with the two-time operator whose
average is given by a double integration like (4.100) or (4.113)? The answer
to this question is found by studying Sect. 4.3.3 a little more carefully to
find out what really makes the calculation there work. Needless to say, the
extension of this calculation to two-time averages calculated in the Wigner
representation is going to call for a little more algebraic muscle.

First, note that a sum of averages (1 > 0)

D08+ 1)0;(1) = 3 r{(e57(0;0(1)01)) S} (4.116)
W ]

can be written as a phase-space integral analogous to (4.96):

4.3 Two-Time Averages 139
SO0 +7)0;(1)
7

_ 5_/'#“[6"("(“4’&'55')'Erz‘in,’,,md.(""")] F;"(a,a'),
" (a.117)

where we have used (4.84) and (4.94), and § denotes any operator written as a
symmetric-ordered series [Eq. (4.81)]. Now, the point on which the calculation
of Sect. 4.3.3 turns is found in the fourth line of the equation below (4.96); if
we can substitute F{() (z,2") for () (z,2*) here we will be able to proceed
in a parallel calculation to a result analogous to (4.100) - with W replacing
P, and S replacing N. But to connect such a calculation with (4.117) we must
answer one question: What operators O; and O; must be chosen so that

P .
P YICE
7]

With the answer to this question the two-time operator average obtained
from moments of the two-time distribution in the Wigner representation will
be the average (4.116).

The key to an answer lies with the following observation. Using (4.71)
and the Baker-Hausdorff theorem [Eq. (4.8)], we find
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= tnefo(®)[(@— %it-)eu'a'-ﬂzu +eu'n'+un(n+ 1]}
= HES (5 2") + E (20 (4.118a)

and, in a similar fashion,

@ FN(2,2%) = J[FS) 0 (2.2°) + Floh o (2,2))- (4.118b)
Also, if we wish to obtain an answer in a form that preserves the relation-
ship to operators written in symmetric order, we must order the differential
operators appearing in (4.118) in a corresponding fashion. Thus, we write
[ Al
iz aiz)" ~ \oi=) 0i)")s’

(4.119)
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where the right-hand side is the average of the (p+q)!/(pl!) orderings of the
pdifferential operators 9/8(iz") and the q differential operators 3/8(i). Now
the answer to our question s accessible. To reach it, however, still requires a
little combinatorics. The final step is left as an exercise:

Exercise 4.7 Use (4.118a), (4.118b), and (4.119) to show that

M p ey LK () e .
s a0 @) = 5w (k) Fan a2

=
(4.120)
with
(a:p(t):a?) ) = Gral > 0paOpra-r -+ Okap(t)Ox -+ O,
o) (4.121)

where the summation in (4.121) is taken over all different permutations
Oy +++Opyyq of p creation operators and g annihilation operators - i.e. p(t)
is placed into each term of (a'Pa%); k places from the extreme right.

Equation (4.120) now allows us to follow the steps that led to (4.97) to
obtain the corresponding result
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The series of operators O; and O; appearing in (4.117) must now be chosen

to conneet with this result. The choice is fairly obvious from the associated
function that appears on the left-hand side of (4.122); we have
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where we have used (1.102). The order of the subscripts in the sum over

permutations of the operator product a'”a? can be changed with no effect,
since operator sequences in every order are covered in the sum. Then
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=1
-1 g P+q) rlg!
AN
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In the operator sequences on the right-hand side of this expression p(t) is
inserted k places from the extreme left, in contrast to its position k places
from the extreme right in the definition (4.121). This difference is removed,
however, by a change of summation index, with p+q - k — k; after making
this change we arrive at the desired explicit form for (4.117); using (4.84)
and (4.94):
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Equations (4.122) and (4.123) allow the two-time operator average on
the left-hand side of (4.123) to be calculated as a phase-space average with
respect to the two-time Wigner distribution. Following the steps leading from
(4.98) to (4.100) we obtain the corresponding result (r > 0)

pte
i Z;(,,Z ) {8t e 0)) = @RI,
(4.124a)
with
((@Pat) (ST +7))y,
/d?u /d’aa ag’afS(a,a")W(a,a',t + 750,04, 1),
(4.124b)
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and
W(a,a’,t +700,05,t) = W(a,a",7lag, a3, 0)W(ao, a5, t).  (4.125)

‘We have again managed to construct a relationship between ordered oper-
ator two-time averages and two-time averages in the corresponding “classi-
cal” statistical system. However, the sum of operator averages appearing on
the left-hand side of (4.124a) makes this a rather more formidable relation-
ship than the corresponding relationships for the P and Q representations
[Eqs. (4.100) and (4.113)).

To convince ourselves of the consistency of our result we should perhaps
show that (4.124) is able to reproduce the expression for calculating one-
time averages in the Wigner representation [Eq. (4.31)]. This is clear when
we specialize to one-time averages by either taking p = ¢ = 0, or § = 1; in
both cases we need only observe that

P L
z(" M ") =(L+1pre=grhe,
=1

It is less obvious, however, that the single-time result is recovered when 7 is
set to zero. Then (4.124) becomes
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I this is to correspond to (4.31), the phase-space function
aa’S(a,a%) = Cl

va
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that appears with the Wigner distribution in the integrand on the right-hand
side must be the symmetric-ordered associated function for the operator that
appears on the left-hand side - i.e. for the operator

1S pg 1.5 -)<k1>
zm; T (@810
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We know that (a'”*”a?*9')s is the operator with the symmetric-ordered
associated function a*?*# a?*7'; thus, we must show that
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1 &y - P
Pz Z(" e q)(ﬂ"’= (aa%)s:a7) = (a"*7att7)s. (4.126)
=

The proof is constructed by using the identity (4.2) to write
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Then, using
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a caleulation parallel to the one leading from (4.118) to (4.120) gives
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Substituting this result and making a second use of (4.28), we have
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It is possible to derive more general expressions for two-time averages
in the Wigner representation - expressions that involve partial derivatives,
after the fashion of the results (4.112) and (4.115) for the P and Q repre-
sentations. We have no use, however, for these expressions later in the book
and therefore we will not bother with their derivation here. In general we
are interested only in the simple relationships (4.100), (4.113), and (4.124),
where two-time operator averages are given by moments of the two-time
phase-space distributions. It is important to realize, however, that within
each of the three representations we have discussed many two-time averages
simply cannot be calculated in terms of a simple “classical” integral; the
more complicated expressions such as (4.112) and (4.115) are needed when
the ordering is inappropriate for the chosen representation. When calculating
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single-time averages we always have the option of reordering the operators
to suit the representation. Thus, (a'a) can be calculated as (a'a) = (a%a),
in the P representation, (aa') — 1 = (_)Q — 1 in the Q representation, or
as }((a'a) + (aa')) — § = (a7a),, — § in the Wigner representation. On the
other hand, while an average like (a'(t + )a(t)) , or {a(t + 7)a(t)), can be
calculated as a “classical” integral in the P representation [Eq. (4.100)], we
generally do not have commutation relations to tell us how to reorder the
operators so that the same result can be obtained as simply in either the Q
or the Wigner representations. Applications in quantum optics are ulnmalely
concerned with the normal-ordered time-ordered averages that arise
theory of photodetection [4.11, 4.12]. Our phase-space results for lwl)-lm\e
(more generally multi-time) averages clearly distinguishes the P representa-
tion as the most suited to the treatment of problems in quantum optics -
results for multi-time averages show this even more clearly than do results
for one-time averages.

1

Note 4.7 The assertion that the P representation is the most suited to
problems in quantum optics perhaps requires some qualification. The P rep-
resentation gains its special status from the theory of photoelectric detection,
in which normal-ordered time-ordered averages appear. Therefore questions
that are related in an immediate way to the ultimate observation of pho-
tons through the photoelectric effect lead in a natural way to a phase-space
formulation in terms of the P representation. But there are questions of in-
terest which need not be stated in terms of the photoelectric emission that
ultimately completes a measurement process. Certainly then, there are situ-
ations in which, as a mathematical tool, the Q or the Wigner representation
might be preferred over the P
in this regard is the fact that the P di
tion. If this is so we do not gain much physical insight, and probably little
‘mathematical assistance, by using the P representation. On the other hand,
the Q and Wigner distributions are always well-behaved functions (although
the Wigner distribution may take on negative values). For this reason the Q
or Wigner representation is often the choice for studies of nonclassical states
of the electromagnetic field - for example, squeezed states, in one sense, are
related most directly to the Wigner representation.

Having said this, it is still important to reiterate the observation above
concerning multi-time averages. When we use a phase-space representation
to convert an operator master equation into a Fokker-Planck equation, we
do not merely set up a representation for some state of the electromagnetic
field; we set up a correspondence between quantum and classical processes
that evolve in time. When the P representation provides the basis for the
quantum-classical correspondence a direct connection exists between all the
multi-time correlation functions of the classical process and the multi-time
correlation functions of the quantized field that are measured by photoelec-
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tric detection. We cannot make a similar general statement connecting the
classical mul ime correlation functions and measured multi-time statistics
of the quantized field when the Q or Wigner representations provide the basis
for the quantum-classical correspondence.

Exercise 4.8 Reproduce the result
(a'(0)a' (r)a(7)a(0))ss = #3(1 +€777)

from Sect. 1.5.3 using the P representation and the @ representation. From
the simple relationship between the Fokker-Planck equations for the damped
harmonic oscillator, it follows that (4.113) and (4.124) give

(a(0)a(r)a’ ()a' (0))w = (@ + 1)2(1 + €777)

and

( )((a'(m (@(@a()s:a)§”),, = i+ D1 +er

Reproduce these results using the methods of Sect. 1.5.3.



